Prostate MR Image Segmentation Method Using two Stacked U-nets

Wanli Chen^{a,1}, Yue Zhang^{a,b,1}, Yifan Chen^c, Hongjian Shi^{a,*}, Xiaoying Tang^{a,*}

^a Department of Electrical and Electronic Engineering, Southern University of Science and Technology, China

^bDepartment of Electrical and Electronic Engineering, The University of Hong Kong, China ^cFaculty of Science and Engineering, The University of Waikato, New Zealand

Abstract

This document briefly describes techniques we used in automatic segmentation of the prostate in transversal T2 MRI for the PROMISE12 challenge. We trackled this problem using two stack U-nets.

1. Data Preprocessing

Uniform size. To unify the image sizes, we resized the 2D MRI slices of each image to be of size 256×256 .

Gaussian normalization. Gaussian normalization was then applied to rescale the voxel intensities to has a zero mean and a unit variance.

 $Data\ augmentation.$ Training set has about 1200 images with corresponding masks. Therefore, data was augmented to 5000 by random rotations , shifts. zooms, flips and elastic deformations.

2. Network architecture

Our network is trained with two stack U-nets [1].

^{*}Corresponding author

Email addresses: shihj@sustc.edu.cn (Hongjian Shi), tangxy@sustc.edu.cn (Xiaoying Tang)

¹Equal contribution

3. Implementation Details

The proposed method was implemented in Python language, using Keras with Tensorflow backend. All experiments were conducted on a Linux machine running Ubuntu 16.04 with 32 GB RAM memory. The U-net training was carried out on a single GTX 1080 Ti with 11 GB RAM memory.

4. results

The training dataset is split into 45 training cases and 5 validation cases. The validation set were arbitarily set to the cases $\{05, 15, 15, 35, 45\}$

Table 1: Statistics of validation slices		
Mean vDSC	Median vDSC	$\mathbf{Std}\ \mathbf{vDSC}$
0.88	0.88	0.05
mean hauss. Dist	mean MSD	mean Rel. Abs. Vol. Diff
12.24	1.84	25.28

References

 O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241.