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ABSTRACT

Segmentation of the prostate in 3D MRI is of high clinical
demand since it has high diagnostic value. However, there is
a lack of accurate prostate segmentation methods.

Semantic segmentation of the prostate in 3D MRI is a chal-
lenging task since there is a large variation of prostate shapes,
there are different parameters used for acquisition of T2-
weighted MRI of the prostate and the amount of provided
training data is limited. The segmentation problem can be
described as a pixel level boundary detection problem.

In this paper we investigate different convolutional neural
network architectures for segmentation of the prostate. First,
we find use of 3D context information necessary for high
performance. We find that use of dense connected fully covo-
lutional neural networks has high segmentation performance.
This is caused by the fact that dense convolutional neural net-
works has deep supervision properties, thus the architecture
mitigates vanishing gradients. We show state of the art on the
Promise-12 challenge with a dice coefficient equal 0.898 on
the validation set using 3D fully dense convolutional neural
networks.

Index Terms— Semantic segmentation, fully convolu-
tional neural networks, Promise-12 challenge

1. INTRODUCTION

Identification and segmentation of anatomic structures and
pathology in medical images is useful for diagnosis of dis-
eases, research, evaluation of treatment responds and moni-
toring diseases in medicine. Manual segmentaion of medical
images like Magnetic Resonance Images (MRI) is a chal-
lenging and time consuming task, especially because MRI
is usually acquired as multi-slices yielding a 3D volume. In
practice there is inter-observer variance between different
manually segmented images from different observers, since
observers tend to over-segment or under-segment the images.
Furthermore, there is intra observer variance since annota-
tors tends to have difficulty reproducing the same segmented
images. Ground truth medical image segmentation is thus
special hard to obtain and expensive. Compared to other
image segmentation tasks, segmentation of medical images

is a challenging task. Therefore, there is a need for fast and
accurate automatic image segmentation tools for medical use.
In recent years convolutional neural networks (CNN) has
shown impressive results in different computer vision tasks
including object detection [1] and semantic segmentation [2].
State of the art performance in computer vision semantic seg-
mentation benchmarks like Pascal VOC [3] and Cityscapes
[4] are governed by fully convolutional neural networks in-
spired by the architecture proposed by Long et al. in 2015
[2].
However, a slightly more relevant benchmark dataset for
the task of segmenting MR images is the Promise-12 chal-
lenge dataset [5], which consists of T2weighted MR images
and ground truth segmentations of the prostate. The images
originates from different scanners with different protocols,
however, all images are T2-weighted. Segmentation of the
prostate is of high clinical demand since it has diagnostic
value regarding benign as well as malignant prostatic hyper-
trophy and prostatitis. The shape and the size of the prostates
in the MRI are varying, and thus segmentation of the prostate
is a relative challenging task.
Semantic segmentation is a computer vision task, in which
each pixel x is labeled as a category y. State of the art se-
mantic segmentation network architectures relies on [2] using
fully convolutional neural networks. These so-called fully
convolutional neural networks (FCNN) consists entirely of
convolutional layers and these are quite efficient compared
to sliding window approaches as in [6], in which a patch-
window classifies the center pixel of the given patch window.
Regarding medical image segmentation state of the art
methods relies on similar structures. Challenges in segmen-
tation of medical imaging compared to segmentation in com-
puter vision with natural images includes:

1. Ground truth data is incomplete and expensive to ob-
tain. In order to obtain ground truth images, multi-
ple annotations from the same annotator are obtained
and annotations from different annotators are obtained
as well. Since annotators either tend to over-segment
(high sensitivity but low specificity) or under-segment
(low sensitivity but high specificity), ground truth im-
ages can be modelled from imperfect annotations by
modelling human errors [7]. Alternatively, it is also



possible to construct ground truth images using major-
ity voting. However, access to this kind of data can be
limited or the data might be imperfect.

2. Segmentation performance of convolutional neural
networks tends to degrades when applied to a new
database. This is caused by fact that MRI has countless
imaging protocol as discussed [8]. In MRI one can ad-
just eg. echo time receiving an image with bright new
contrast features. Manual annotation of each possible
domain of image protocol is expensive and in practice
unfeasible .

3. Convolutional neural networks is a framework, in
which the input & is modelled to the output y using
deterministic models. State of the art methods relies on
pixel-wise classification, in which no prior information
about the underlying shape is introduced. In order to
introduce shape priors a generative neural networks
framework with convolutional autoencoders can be
used as proposed [9].

4. In MRI the region of interest often occupies only a
small region compared to the full 3D volume. Conve-
nient choice of cost function is thus important for suc-
cessful training of convolutional neural networks. Dif-
ferent strategies has been suggested to overcome this
problem, including weighted cross entropy loss func-
tion [10] and training with a dice loss [11]. Alterna-
tively, one can train in batches with uniform distribu-
tion of the the presented classes.

5. Typical MR images consist of 3D volumes with di-
mension like 512x512x40 yielding millions of voxels
per volumr. Compared to images in computer vision
benchmark datasets like VOC Pascal medical images
are significant larger. Since the computational cost
for calculating convolutions is dependent of the spa-
tial feature-map size it is expensive to train a neural
network with large input size. Therefore, the best per-
forming algorithms are using only sub volumes for
training.

2. RELATED WORKS

Recent advances in computer vision is utilized in medical im-
age analysis. In [10] the U-Net was proposed, which is a
fully convolutional neural network used for segmentation of
neurons in electron microscopy images. The architecture of
U-Net was extended to 3D data in [12] known as U-Net 3D.
The architecture from U-Net inspired the authors in [11] to
propose the V-Net. The V-Net is similar to the U-Net but uti-
lizes residual connections as in [13]. The V-Net implements
a dice-coefficient loss layer in order to circumvent the class

imbalance problem. Furthermore, in V-Net the input consist
of large cropped sub volumes of size 128x128x64. The au-
thors of V-net reports a dice coefficient of 82,39 on the test
set in the Promise-12 challenge. In [14] the authors used
3D convolution with mixed residual connections and showed
state of the art on the Promise-12 challenge in 2016 with a
dice score 86,93. Furthermore, the authors of [14] claims
that use of deep supervision [15] and residual skip connec-
tions [13] is important for convergence speed and prevention
of overfitting. The authors of [14] claims that segmentation
of the prostate in MRI-T2 weighted images is a boundary de-
tection problem, thus it is sufficient to take inputs consist-
ing of sub volumes with size equal 64x64x16. The authors
of [14] is currently ranked as the fifth best performing algo-
rithm (May 2018). The top fourth methods on the Promise-12
challenge reports dice coefficient of 89.18, (WHU-CS-sigma-
RPI method 2), 87.21 (Philips DL-MBS), 87.19 (AutoDens-
eSeg) and 87.04 (WHU-CS-sigma-RPI), respectively (May
2018). The best performing algorithm (WHU-CS-sigma-RPI
method 2) is using residual connections with attention mod-
ules with input size 96x96x16. However, the AutoDenseSeg
and WHU-CS-sigma-RPI reports use of dense-nets with input
size equal 64x64x16.

3. SEMANTIC SEGMENTATION

Semantic segmentation is the process of labelling each pixel
in an image. As previous stated in Section 1 state of the art
deep learning network employs the architecture from [2], in
which FCNN are utilized. Regarding medical image seg-
mentation the so-called U-Net architecture [10] is of certain
interest, in which an encoder-decoder structure is used. In
this convolutional neural network architecture pooling lay-
ers are used in the decoder part to incorporate translation
in-variance, achieve abstraction from original representation
and reduce feature size. In the decoder path un-pooling lay-
ers (transposed convolution) are used to resize the feature
maps to original scale and concatenate the feature maps with
feature maps of the same size from the encoding path. The
U-Net model was used for cell segmentation of neurons on
electron microscopy imaging. The U-Net architecture has
been adapted for 3D image segmentation in [12]. Current
state of the art neural networks for semantic segmentation
uses either residual networks [13] or densely connected neu-
ral networks [16]. Recently, the authors of the so-called
DeepLabv3+ [17] uses fully convolutional neural networks
with encoder-decoder with atrous depthwise seperable convo-
lution for semantic image segmenation. The authors of [17]
reports new state of the art on both Pascal VOC [3] (April
2018) and City-scapes [4] (April 2018).

In this section we briefly introduce the concepts and build-
ing blocks relevant for this paper.



3.1. Residual block

The residual block proposed by [13] uses an identity mapping
of input features by forward passing the input and summing
it after a sequence of convolution, ReLU activation and Batch
Normalization layers:

= Hy(21) + -1y (1

In which H is a function with the operations convolution,
ReLU and Batch Normalization repeated 2 or 3 times. x;
is the next layer and x;_; is the previous layer. The inven-
tion of the residual block has made it possible to train very
deep convolutional neural networks without problems regard-
ing vanishing gradients.

3.2. Dense block

An alternative to the residual block has been proposed by
[16], in which input features are concatenated instead of
added. This alternative block is known as the dense block.
In this way features might be reused and gradients can flow
directly from previous layers. The number of output feature
maps k is referred to as the growth rate, which is normally is
increased linearly.

) .’170]) (2)

;= Hi([x1-1, 21-2, ..

Here [...] represents concatenation of layers. The function
H is now composition of Batch Normalization (BN), ReLU,
convolution and dropout.

3.3. Tiramisu

Motivated by the work on the dense block [16] a convolu-
tional neural network for semantic segmentaion has been pro-
posed by [18]. In the Tiramisu convolutional neural network
the dense block is employed in an encoder decoder fashion
like U-Net [10]. In the encoding path of this network dense
blocks are applied before max pooling, and features are for-
warded before the dense blocks by skip connections with con-
catenation. In the decoding path transpose convolutional lay-
ers are utilized before the dense blocks. Furthermore, long
skip connections of the same size are applied to concatenate
feature maps from the encoding path to the decoding path.
The extensive use of skip connections by concatenation is hy-
pothesized to enforce feature reuse and enforce deep super-
vision for training. In the Tiramisu convolutional neural net-
work there is two important hyperparameters. The first one is
the growth rate, which is the number of output feature maps.
The second hyperparameter is the numbers of layers pr. block.
The numbers of layers per block is often increases in the en-
coding path and decreases in the decoding path. The authors
of dense fully convolutional neural network (Tiramisu) [18]
shows state of art on the CamVid benchmark dataset (Febru-
ary 2017) with use of fewer parameters compared to other

competitors. The original implementation in Theano of the
Tiramisu model can be found on Github !.

3.4. DeepLabv3+

In [17] it has been shown that usage of atrous convolution and
Xception blocks in an encoder decoder scheme it is possible
to obtain state of art performance on CityScapes [4] (April
2018) and Pascal VOC [3] (April 2018).

Atrous convolution is an extension of ordinary convolu-
tion. In general one would like to increase the receptive field
of the convolutional kernel, however, this has a computational
cost. Atrous convolution, also known as dilated convolution,
uses a atrous rate when applying the convolutional kernel. In
this way the kernel ”skips” pixels at atrous rate » when sam-
pling the input image:

afi] = Z x[i + 7 - k|w(k] 3)

k

In this x is the input, y is the output, r is the atrous rate,
k is the index in the input and w is the kernel weights.

Another important feature of the [17] is the use of Xcep-
tion blocks, which is the building blocks in the Xception net-
work [19]. The Xception blocks is an extreme version of the
Inception block introduced in [20]. The Xception network has
outperformed the Inception network on ImageNet. The Xcep-
tion block consist of depthwise separable convolutions with
residual connections invented by [13]. The depthwise sepa-
rable convolution is more computational efficient since it has
fever multiplication operations compared to standard convo-
lution. In [21] it is shown that the depthwise separable convo-
lution is 8-9 times computational cheaper compared to stan-
dard convolution. The depthwise separable convolution has
two components 1) First, it applies depthwise convolution,
which applies the convolutional kernels separate through each
input channel. 2) Next, a point wise convolution with kernel
Ix1 is applied to perform a linear combination of the chan-
nels. Unfortunately, this operation is currently only imple-
mented for 2D problems. The DeepLabv3+ utilizes depthwise
separable convolutions and atrous convolution in a encoder
decoder structure. A Keras implementation of DeepLabv3+
used for this project is found on Github 2.

4. METHODS

We choose to compare the performance of a U-Net 3D ar-
chitecture, DeepLabv3+ 2D and Tiramisu 3D. The input for
the models consist of different sizes, since we also seek to
investigate impact of the input size. The comparison is con-
ducted on the Promise-12 segmentation challenge.

Thttps://github.com/SimJeg/FC-DenseNet
Zhttps://github.com/bonlime/keras-deeplab-v3-plus



4.1. Data augmentation and inference

For training sub volumes were uniform sampled from back-
ground and prostate with equal probability. The size of the
sub volumes were different for each investigated model. The
sub volume size for the U-Net model was 256x256x16, the
sub volumes size for the DeepLabv3+ model was 256x256x13
and finally the sub volume sizes for the Tiramisu 3D was
64x64x16. The sub volumes were z-score normalized be-
fore feeding to the GPU. For inference a sliding overlapping
strategy was used with sub-volumes with stride equal half
of the input size. The average of the probabilities of the
overlapping sub-volumes yielded the final prediction. All
implementations was implemented in Keras.

4.2. U-Net architecture

Inspired by the work of [10] we employed a encoder decoder
fully convolutional neural network.

We investigated a 3D convolutional neural network with
input size 256x256x16. The idea of using large input size is
that it gives less redundancy in training and the network can
learn global context with respect to the input size. However,
it has a drawback since we are only able to train 1.9 million
parameters due to memory limitations.

Inspired by the work of [10] we employed a encoder de-
coder convolutional neural networks. In general the architec-
ture consist of building blocks containing the following oper-
ations in the following order; Batch Normalization, 3D con-
volution with 3x3x3 kernels, ReLU activation, dropout with
p = 0.2, 3D convolution with kernel 3x3x3, ReLLU activa-
tion and a max pooling layer. The network has three down-
sampling blocks and three upsampling blocks. Weight de-
cay was utilized at each convolutional layer with w equal
0.0001. All convolution was performed with padding. The
model is presented in Figure 1. In order to train the network
a binary cross entropy was utilized and the Adam optimizer
was chosen with learning rate equal 0.001 and step decay per
epoch equal 0.0001. At each iteration random crops of size
256x256x16 was sampled with equal probability from each
class. The batch size was 14 on 2 Titan X GPU’s (7 at each
GPU).

4.3. DeepLabv3+ architecture

Motivated by the impressive performance of DeepLabv3+
[17] on CityScapes and VOC Pascal we experimented with
the DeepLabv3+ architecture on the Promise-12 dataset.
Unfortunately, Tensorflow does currently not support 3D
seperable convolution, and thus we employed 2D network ar-
chitecture using the z-stack axis information as input features.
The input for the DeepLabv3+ architecture is 256x256x13, in
which 256x256 represents rows and columns, and 13 repre-
sents slices stacked as input features. For each iteration sub
volumes of size 256x256x13 was uniform random sampled

from each classes. The architecture in the Deeplabv3+ consist
of a encoder-decoder structure. The decoder structure consist
of an entry flow part, an middle flow part and a exit flow
part similar to [19]. The implementation of the DeepLabv3+
follows the original implementation.

In the flow entry part two times convolution 2D 3x3, Batch
Normalization and ReLU is implemented. The final part of
the flow entry block consist of three times Xception blocks,
in which the first two has convolution with stride 2, yielding
a spatial dimension reduction with factor 4.

In the middle flow block 16 times Xception blocks are imple-
mented each with atrous rate equal 2.

The exit flow part starts with two times Xception blocks with
atrous rate equal 2 and 4, respectively. Next, convolution
2D, Batch Normalization and ReLU is implemented before 3
times depthwise seperable convoluton with atrous rate equal
12, 24 and 36, respectively. All feature maps from these
depthwise seperable convolution with atrous rate 12, 24 and
36 are concatenated.

The decoding path starts with average pooling, convolution
2D, Batch Normalization followed by bilinear upsampling.
The skip connection list is now concatenated to the upsam-
pling part. Next, convolution 2D, Batch Normalization and
bilinear upsampling is performed again. After the bilin-
ear upsampling, convolution 2D, Batch Normalization and
ReLU is utilized, and the input from the bilinear upsampling
is concatenated to the current feature maps. Finally, two
times depthwise seperable convoltion are implemented be-
fore convolution 2D 1x1 with sigmoid activation. The model
is presented in Figure 2. All convolutions use padding and
weight decay is implemented at each convolutional layers
with w = 0.0001. To train the model a binary cross entropy
loss is used with Adam as optimizer with learning rate equal
0.0001 and learning rate decay equal 0.5 for each 50 epoch.
The training was carried out asynchronously on two Titan X
with batch size equal 3 on each for 1000 epochs.

4.4. Tiramisu architecture

As mentioned in Section 2 the top scores on the Promise-12
leaderboard uses deep dense connected convolutional neural
networks. In order to replicate similar results we employed a
Tiramisu inspired 3D convolutional neural network. We ex-
periment with different number of layers pr dense block with
both 3 and 4 pooling layers. The growth rate described in
section 3 is set to 16. The network starts with a 3D convolu-
tional layer with 48 filters. The downsampling path consist of
dense blocks each followed by max pooling. Next, the bottle-
neck dense block is implemented. The decoding path of the
network consist of dense blocks followed by transpose convo-
lution. Long skip connections from the encoding path to the
decoding path by concatenating are performed. Finally, con-
volution with 1x1x1 is used before sigmoid activation. All
convolutions use padding and weight decay is implemented



at each convolutional layers with w = 0.0001. To train the
model a binary cross entropy loss is used with Adam as op-
timizer. The learning rate is equal 0.0001 with decay equal
0.0001. Training was carried out asynchronously on 4 times
Titan X with batch size 2 on each GPU.

5. EXPERIMENTS

5.1. U-Net 3D architecture results

The binary cross entropy loss for the U-Net 3D architecture
is presented in Figure 4.

model log loss

— train
1.2 4 validation

1.0

0.8 q

log loss

0.4

"l ot

0.0 1

ww

T T T T T T T
4] 50 100 150 200 250 300
epoch

Fig. 4: Binary cross entropy log loss for U-Net 3D architec-
ture.

The inference was accomplished by overlapping slid-
ing sub volume strategy of size 256x256x16 with stride
128x128x8. The probability for each overlapping prediction
was averaged. The U-Net achieved a dice coefficient of 0.72
on the validation set. The final prediction is presented in the
first row in Figure 9

5.2. DeepLabv3+ 2D architecture results

The binary cross entropy loss for the DeepLabv3+ is pre-
sented in Figure 5. The inference was accomplished by over-
lapping sliding patches strategy of size 256x256 with stride
128x128. This was repeated for all slices in the volume.
The probability for each overlapping prediction was averaged.
The DeepLabv3+ achieved a dice coefficient of 0.79 on the
validation set. The final prediction is presented in second row
in Figure 9.
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Fig. 5: Binary cross entropy log loss for DeepLabv3+

5.3. Tiramisu 3D architecture results

As mentioned in section 4.4 several experiments with the
3D Tiramisu model was carried out. The inference for all
Tiramisu models was accomplished by overlapping sliding
patches strategy of size 64x64x16 with stride 32x32x8. The
probability for each overlapping prediction was averaged.

In Figure 6 the binary cross entropy loss is presented for
the Tiramisu model with 4 pooling layers and 9 dense
blocks with the following numbers of convolutional lay-
ers: 9,10,12,15,17,20,17, 15, 12. This model is denoted as
“Tiramisu3D p4a”.

In Figure 7 the binary cross entropy is presented for the
Tiramisu 3D with 3 pooling layers and 7 dense blocks with
the 7 dense blocks with the following numbers of convolu-
tional layers 7,8,9,12,15,16,17. This model is denoted as
“Tiramisu3D p3a”.

In Figure the binary cross entropy is presented for the
Tiramisu 3D with 3 pooling layers and 7 dense blocks with
the 7 dense blocks with the following numbers of convolu-
tional layers 12,12,12,12,12,12,12. This model is denoted
as “Tiramisu3D p4b”.

The final prediction using model Tiramisu3D p4 a is pre-
sented in the third row in Figure 9. This prediction yielded an

validation dice coefficient of 0.898.

A comparison between the model is presented in Tabel 1
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6. DISCUSSION

The U-Net model with larger input size converges faster since
it has lesser redundancy, but it lack in performance with an
dice score on 0.722. However, as compuational resources
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Fig. 7: Binary cross entropy log loss for Tiramisu 3D with 3
pooling layers and growthing and number of layers:

growth we will expect that whole volume input will be pre-
ferred in the future.

The DeepLabv3+ 2D yielded a validation dice score on
0.793 indicating a lot of information from the 3D context is
needed to gain full contextual information. As mentioned be-



Table 1: Comparison of the performance of different model architectures

Model

U-Net 3D

DeepLabv3+

Tiramisu 3D p4a

Tiramisu 3D p3a

Tiramisu 3D p3b

Parameters

1,605,381

41,253,023

49,382,353

22,692,289

23,487,169

Validation dice coefficient

0.722

0.793

0.867

0.898

0.898
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Fig. 8: Binary cross entropy log loss for Tiramisu 3D with 3
pooling layers and 12 number of layers per block

fore the depthwise seperable convolution is not implemented
in deep learning frameworks like Tensorflow. Future work
will reveal the performance of the DeepLabv3+ in 3D.

For training of the Tiramisu 3D we find that use of very
small batch sizes (4-8) is difficult since the distribution of the
classes is imbalanced. Sampling of all classes with equal
probabilities mitigates this problem We find that the use of
dense blocks in the Tiramisu 3D model has deep supervision
properties, which is important for training deep convolutional
neural networks in 3D since it helps the flow of gradients.
Furthermore, we investigate different Tiramisu architectures.
We find that with the given input we only need to pool 3 times,
and that the number of layers pr dense block does not play an
important rule. One can either increase the number of layers
per dense blocks through the network or the number of layers
can remain constant.

By comparing the different models in the results section
we see that the best performing algorithm is the Tiramisu 3D
p3a and the Tiramisu 3D p3b architectures both with an val-
idation dice score equal 0.898. This suggest that in order to
keep the model sufficient deep we need to train with sub vol-
umes of relative small sizes (64x64x16).

We assume that the network architecture of Tiramisu 3D
can easily extent to other biomedical 3D segmentation chal-
lenges, in which the segmentation challenge can be described
as a boundary detection problem.

7. CONCLUSION

We present a new architecture for semantic segmentation of
the prostate in 3D MRI T2-weighted images. We evaluated
the performance of a U-Net 3D architecture, DeepLabv3v+
2D architecture and several Tiramisu 3D architectures. We
propose the Tiramisu 3D p3a architecture which shows state
of the art on the Promise-12 challenge dataset. Futhermore,
we have investigated the impact of input size, and found that
small sub volumes of size eg. 64x64x16 is necessary for train-
ing a sufficient deep network architecture with the current
computational resources. Furthermore, we have shown the
performance of the DeepLabv3+ architecture in 2D. Future
work will explore the DeepLabv3+ architecture in 3D when
depthwise separable convolution is implemented in 3D Ten-
sorflow.
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From left to right: center slice of MRI scan, ground truth image and Tiramisu prediction

Fig. 9: Model predictions on the validation set
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