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Abstract. This paper presents a method for automatic segmentation
of the prostate from transversal T2-weighted images based on 3D Ac-
tive Appearance Models (AAM). The algorithm consist of two stages.
Firstly, Shape Context based non-rigid surface registration of the man-
ual segmented images is used to obtain the point correspondence between
the given training cases. Subsequently, an AAM is used to segment the
prostate on 50 training cases. The method is evaluated using a 5-fold
cross validation over 5 repetitions. The mean Dice similarity coefficient
and 95% Hausdorff distance are 0.78 and 7.32 mm respectively.

1 Background

Prostate segmentation is essential for calculating prostate volume, image fusion,
creating patient-specific prostate anatomical models, and as a pre-processing
step for many computer aided diagnosis algorithm. Furthermore, information
about the size, volume, shape and location of the prostate relative to adjacent
organs is an essential part of planning for minimally invasive therapies and biop-
sies.

Because manual segmentation of the prostate is time-consuming and highly
subjective, (semi)-automatic segmentation methods are preferable. However, seg-
menting the prostate in MR images is challenging due to the large variations of
prostate shape between subjects, the lack of clear prostate boundaries and the
similar intensity profiles of the prostate and surrounding tissues.

The 2012 MICCAI challenge: ”Prostate MR Image Segmentation” involves
segmentation of the prostate on transversal T2-weighted images. The goal of the
challenge is to evaluate segmentation algorithms on images from multiple centers
and multiple MRI device vendors.

Only a few prostate segmentation methods for T2-weighted MR images cur-
rently exist. Klein et al. [1] proposed a method based on non-rigid registration of
a set of pre-labeled atlas images, against the target patients image, using mutual
information. Subsequently, the segmentation is obtained as the average of the
best matched registered atlas sets. Multiple modifications are published on this
atlas based prostate segmentation method [2–4].

The methods presented by Toth et al. [5] and Ghose et al. [6, 7] are based
on statistical shape models. Toth et al. used a levelset-based statistical shape



model – which is landmark free and fully 3D – in combination with an statistical
appearance model. In order to segment the prostate on a new image, a Bayesian
classifier is first employed to pre-classify the image voxels as belonging to the
prostate or the surroundings. Subsequently the shape model is fitted to the
segmentation followed by an adaptive update of the statistical appearance model
until convergence. Ghose et al. presented several segmentation methods based on
2D active appearance models (AAM). Active appearance models include both
shape and appearance of the prostate. In [6], they presented a texture enhanced
2D AAM. In [7] they applied 2D AAM with a 3D shape restriction imposed by
rigidly registering the obtained volume to a 3D average model of the prostate [7].

It has been demonstrated that the combination of both shape and inten-
sity prior information improves the segmentation accuracy. We present a novel
framework for automated prostate segmentation based on 3D active appearance
models (AAM) in combination with Shape Context based non-rigid surface reg-
istration to obtain a point distribution model.

2 Methodology

Our proposed method is built on the work presented by Kroon et al. [8]. They
used a Shape Context based non-rigid surface registration in combination with
Active Shape Models to segment knee cartilage. We adapted the framework to
use the Shape Context registration with AAM to include the texture of the
prostate.

An overview of the proposed system is shown in Figure 1 and consists of a
training and a testing part. Active Appearance Models (AAM) contain a sta-
tistical model of the shape and grey-level appearance of the organ which can
generalise to almost any valid example. AAM learn what are valid shape and in-
tensity variations from their training images. During the testing part, the model
is fitted to a new image whereafter the results for the segmentation are compared
with the provided ground truth segmentation.

2.1 Shape context registration

The first step in AAM training is describing the prostate surface in each training
case by a set of n landmark points. Every landmark in a training case must have
a corresponding landmark in all other training case. These point correspondences
allow Principle Component Analysis (PCA) to extract the principal modes of
shape variations.

We want to use the vertices of the prostate surfaces to train the AAM.
Therefore all surfaces must contain an equal number of vertices, and every vertex
must have a corresponding vertex at relatively the same location in all training
cases. To obtain the corresponding points we use Shape Context based non-rigid
registration of the binary segmentation surfaces. The method is described in
detail in [8] and [9], we will describe it briefly.



Fig. 1. Schematic overview of our prostate segmentation approach. The upper blue
box shows the training of the AAM. The lower blue box shows the Test part of the
AAM.

The method consists of four steps: the first step is extracting the surface of
the segmented prostate. The second step is constructing a descriptor, the shape
context, for each point in both data sets. The Shape Context describes every
point on the surface by the vectors originating from that point to all other points
on the surface. For every point on the surface, n − 1 vectors are obtained. The
full Shape Context representation is too detailed. Therefore, for every point pi

on the surface, a coarse histogram of the relative coordinates of the remaining
n − 1 points is defined to be the shape context.

The third step is calculating the matrix Ci,j = C(pi, qj) which contains
the costs between each pair of points. Considering points pi and point qj with
histograms hi and hj respectively, the costs can be calculated as:

C(pi, qj) =
1
2

K∑

k=1

[hi(k) − hj(k)]2

[hi(k) + hj(k)]
(1)

The fourth step is matching the points by minimizing the total matching cost.
The total Shape Context based non-rigid registration works as follows [8]:

One prostate surface is selected as reference surface. This surface is registered to
a surface of another training case. Subsequently the Shape Context is calculated
for all points in both shapes (reference and training). 3D Shape Context is
used [8,10], which is an extension to the original 2D Shape Context [9]. For every
point on the reference surface, we search for a point in the training surface with
the minimum cost, and also from the training surface to the reference surface.
The obtained point correspondences are then used to construct a B-spline grid
which warps the reference surface to the shape of the training surface. We repeat
this process –using a coarse to fine grid– until the reference surface is transformed
into the shape of the training surface. In some regions, the transformed surface
points can still deviate from the real boundary by one pixel. Therefore, the
algorithm uses a modified iterative closest point (ICP) algorithm to calculate



the vectors from the vertices to the closest surface. Using these vectors the final
B-spline grid is updated.

2.2 3D Active Appearance Model

After obtaining the corresponding points, all point sets are aligned into a com-
mon reference frame. Let each point set be represented by a vector x. Then
principle component analysis (PCA) is applied to determine the principal modes
of the shape variations.

x = [x1, x2, ..., xn, y1, y2, ..., yn, z1, z2, ..., zn]T

x̃ = x̄ + Φsbs

(2)

with x̃ an estimate of the shape, x̄ the mean shape, Φs the t eigenvectors
corresponding to the largest eigenvalues and bs a set of shape deformation pa-
rameters [11].

The appearance model can be described in a similar way. First we warp each
training image –using a piece-wise affine warp– so that its points correspond to
the mean shape points. Then we sample the grey-level information of the region
covered by the mean shape. After applying PCA to the normalised appearance
data we obtain the model

g = [g1, g2, ..., gm]T

g̃ = ḡ + Φgbg

(3)

with g representing the appearance vector of m voxels, g̃ an estimation of the
grey-level appearance, ḡ the mean grey-level appearance, Φg the t eigenvectors
and bg a set of appearance variation parameters.

Shape and appearance are often correlated, therefore we can combine both
models and apply a third PCA:

b =

(
Wsbs

bg

)

=

(
WsΦs

T (x − x̄)
Φg

T (g − ḡ)

)

bc = Qc

(4)

where Ws is a diagonal matrix of weights for each shape parameter, allowing for
the difference in units (distance vs. intensity) between the shape and grey models.
Q are the eigenvectors and c is a vector of appearance parameters controlling
both shape and grey-level appearance. Now the shape and grey-levels can be
expressed as function of c using

x = x̄ + ΦsW
−1
s Qsc

g = ḡ + ΦgQgc.
(5)

The AAM is optimized minimizing the difference between the test image
and the synthesized images [11]. Since the appearance models can have many
parameters, the fitting to a new image appears to be a difficult optimisation



problem. However, every optimisation problem is in fact a similar optimisation
problem. Therefore, prior knowledge about how to adjust the model parameters
during image search is acquired by perturbing the combined model and the pose
parameters with some known offsets, and recording the corresponding changes
in the appearance.

The mean model is initialized by manual selecting the center of the prostate
based on visual inspection. Subsequently, the AAM is performed using a two
resolutions with each 15 iterations.

3 Experimental Design

3.1 MR Images

The training data comprise 50 anonymized patient cases which include transver-
sal T2-weighted MR images of the prostate. The training data is multi-center and
multi-vendor, and has different acquisition protocols. This means that there is
a difference in slice thickness, slice orientation, images with/without endorectal
coil etcetera.

Furthermore, a reference segmentation of the prostate is provided for each
case in the training data. The images are downloaded in .mhd format from the
MICCAI challenge website: http://promise12.grand-challenge.org/

Pre-processing The scans are not uniformly sampled, therefore we re-sample
the scans and segmentations to a voxel resolution of 0.5 x 0.5 x 0.5 mm, using
cubic interpolation for the MRI data and nearest neighbor interpolation for the
label data. The orientation of the slices differ per case in the training data.
Therefore the images are rotated to obtain images with equal orientations.

3.2 Experiments

For evaluation of our proposed method we perform a 5-fold cross-validation over
5 repetitions. During one 5-fold cross-validation experiment, the training data
is randomly partitioned into five sub sets. Of the five sub sets, four sub sets are
used as training data, while the remaining sub set is retained as testing data
for the model. The process is then repeated five times, with each of the sub sets
used exactly once as test data.

Furthermore, we splitted the training cases in two groups; the first group
containing the cases with endorectal coil, the second group containing the cases
without endorectal coil. To evaluate our algorithm using two seperate models,
we performed a 3-fold cross validation over 5 repetitions on these two groups.

The segmentations are evaluated using the Dice coefficient (DSC) and the
95% Haussdorf distance. Moreover, slices of MR Images with their segmentation
are shown providing a qualitative evaluation.

http://promise12.grand-challenge.org/#nameddest=challenge_website


4 Results and Discussion

Table 4 shows the mean and median DSC and 95% Hausdorff distance evaluated
using a 5 fold cross validation over 5 repetitions. It is generally accepted that a
DSC value > 0.7 represents a good agreement. The mean DSC overlap for our
segmentation was 0.78 (sd = 0.12, calculated over all cases and all iterations),
with a median DSC of 0.82, which confirms overall satisfactory results of the
segmentation. However, the algorithm was unable to segment the prostate in
case 23 which contains a very large prostate that exceeds the boundaries of the
MRI image. Discarding this outlier result, a mean DSC of 0.80 (sd=0.08) is
obtained.

The presence of an endorectal coil has influence on the prostate shape and
image intensities. Therefore we decided to train two separate models for the
cases with and without coil. The results in Table 4 show that the mean DSC is
increased to 0.81 (sd = 0.12), with a median DSC of 0.83. From this results we
can conclude that training the AAM on images per institute, and per imaging
protocol, will slightly improve the segmentation results. However, a generally
applicable segmentation method is preferable. Therefore we segment the test
cases with one AAM instead of two separate models.

Although our DSC values are slightly higher than the values reported by
Dowling et al. [3] (mean: 0.73) and Gubern-Merida et al. [4] (median: 0.79),
they are lower compared to several other articles [1, 5–7, 12]. However, it is to
be noted that they mostly use training and testing data from only one institute,
containing less variation.

The mean 95% HD value for all datasets is 7.32 mm (sd = 4.91) with a
median value of 6.18 mm. As with the DSC values, splitting the model in two
parts (with and without coil) improves the HD values to 6.43 mm (sd = 4.63)
with median 5.19 mm. Our HD values are lower than the values reported by
Gubern-Merida et al. [4].

Table 1. Table with mean evaluation values over all training cases and five iterations.

One shape model Two shape models

mean DSC 0.78 ± 0.12 0.81 ± 0.12
median DSC 0.82 0.83
mean 95% HD [mm] 7.32 ± 4.91 6.43 ± 4.63
median 95% HD [mm] 6.18 5.19

Figure 2 shows a surface mesh generated from the segmentation result of case
19 (DSC = 0.84) with a colormap indicating the vertex distance to the ground
truth. Visual inspection of these meshes for all cases indicate that the region
with the highest segmentation error is not consistent. Figure 3 shows 4 slices
from different prostates (with DSC > 0.7) with the ground truth contour in
red and the segmentation result in green. The automatic segmentation contours
show good agreement with the manual ground truth segmentations.



Fig. 2. Surface mesh from case 30. The
colormap indicates the vertex distance (in
mm) between the segmentation result and
the ground truth.

Fig. 3. Segmentation result for case 01, 11
(top), 27 and 46 (bottom). The red line rep-
resents the ground truth outline while the
green line represents the segmentation re-
sult.

The automatic segmentation required approximately 3 minutes on a standard
desktop PC (Intel Core(TM) i7 CPU 870 @ 2.93GHz). See Table 2 for more
information about the efficiency of our algorithm.

Table 2. Details about the algorithm.

Parameter Value

A
lg

o
ri

th
m

Language: Matlab 7.13.0.564
Libraries/Packages: Image Analysis Toolkit; 2 packages from

Mathworks File exchange [10, 13]
GPU Optimizations: -

Multi-Threaded: Yes
User Interaction: (1) Selection of the middle of the prostate

M
a
ch

in
e CPU Clock Speed: 2.93 GHz

Machine CPU Count: 4
Machine Memory: 16 GB

Memory Used During Segmentation: ± 2 GB

T
im

e

Preprocessing time: ± 2 minutes (per case)
Shape Context registration: ± 3.5 minutes (per case)

Training Time: ± 3 hours (for 50 training cases)
Segmentation Time: ± 1.8 minutes (per case)

User Interaction Time: ± 50 seconds (per case)



5 Concluding Remarks

Evaluation of our segmentation method has been performed using 50 transversal
T2-weighted MR images. A 5-fold cross validation over 5 repetitions is performed
giving a mean DSC of 0.78 with median 0.82. The 95% HD and visual inspection
of the results also show good agreement of the prostate segmentation.

The method could be further improved. For example by adding texture infor-
mation to the AAM [6], adding additional preprocessing steps such as removing
the bias field, and using several initial pose parameters during the initialisation
of the model.
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