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Abstract. We demonstrate the effectiveness of learning-based methods
and hierarchical boundary deformation for efficient, accurate segmenta-
tion of prostate in T2 weighted MRI data. After normalizing intra- and
inter-image intensity variation, Marginal Space Learning (MSL) is used
to align a statistical mesh model on the image. This mesh is then hier-
archically refined to the image boundary using spatially varying surface
classifiers. Using 10-fold cross validation on 50 cases, we achieve accurate
delineations (0.89 dice coeff., 1.91mm surface error) in under 3s.

1 Background

The improved contrast of MR abdominal imaging over other modalities af-
fords more accurate and consistent manual contouring of prostate [1,2,3]. Con-
sequently, MR imaging now plays an increasing role in prostate radiotherapy
planning, implying automated algorithms for segmenting abdominal structures
in MR are necessary to improve the clinical workflow.

However, automated segmentation of the prostate in MR is challenging due
not only to global inter-scan variability and intra-scan intensity variation caused
by endorectal coil, but also due to the similar appearance of prostate and seminal
vesicles at the apex, geometric variability due to disease and adjacent structures
such as rectum and bladder.

Many existing automatic approaches are registration-based: one or more tem-
plate images with segmentations are registered to the target image and the
aligned segmentations are fused [4,5,6]. Variation in intensity and appearance is
overcome through the use of the appropriate energy (e.g., mutual information)
and the use of multiple templates [5]. Although these registration methods per-
form well when one of the template images is similar to the target image, they
are often expensive, requiring several minutes to return a segmentation [6].

In this work, we leverage the successes of learning-based methods on other
structures (e.g., liver [7], heart [8]) in other imaging modalities to efficiently
segment the prostate in MR. Instead of using an explicit registration of images,
a training set of images is compactly represented with discriminative classifiers
that are used to align a statistical mesh model onto the image. Rather than
relying on edge detectors or hand-designed features [9], we use classifiers that
aggregate and choose the best image features from a large feature pool. We apply
this approach to T2-weighted axial scans abdominal scans, and demonstrate
accurate prostate segmentations (dice coefficient of 0.89) in less than 3s.
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Fig. 1. Our prostate segmentation pipeline first normalizes the image data, then detects
the rough shape, and then uses a coarse-to-fine boundary refinement.
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Fig. 2. An illustration of sorted intensity values before and after linear alignment of
Case15 to Case01 gives a Case15’ with similar global intensity as Case01.

2 Methodology

Our segmentation pipeline addresses the challenges of MR prostate segmentation
through the use of robust machine learning techniques (Fig. 1). To overcome
variability in intensity, we start by performing an intensity normalization to
adjust for global contrast changes (§2.1). Images with endorectal coil (ERC) are
then further enhanced by flattening the intensity profile on the bright regions
near the coil.

In the next phase of the pipeline, a statistical model of shape variation (2.2)
is aligned to these normalized images using marginal space learning (2.3), which
efficiently searches for the pose initialization using discriminative classifiers. This
shape initialization is then refined by a coarse-to-fine boundary refinement that
uses surface varying classifiers to discriminate the boundary of the prostate from
adjacent soft-tissue (2.4). To ensure a feasible shape, this final refinement con-
straints the resulting shape by the statistical shape model.

2.1 Intensity Normalization

In the first phase, we apply a brightness and contrast adjustment to the intensi-
ties of the images (Fig. 2). We select one image as a target image, Î, and find a
least squares solution for the linear intensity transformation for each image, Ii:

a, b = argmina,b

98∑
j=3

(prctile(Î , j)− (prctile(Ii, j)a+ b))2, (1)

I ′i = Iia+ b, (2)

where prctile(Î , j) is the jth percentile of the intensities of the target image.
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Fig. 3. An example of the intensity normalization applied to the ERC images. The
input image is thresholded to obtain a mask, which is then used to define the domain
for the Poisson editing. The result retains gradient features within the bright region,
but the overall intensity within that region is reduced.

For images acquired with an endorectal coil we found that the sharp spikes
in intensity near the coil to have a negative impact on our segmentation results.
Our next normalization seeks to reduce the overall brightness of these regions
while retaining the local image structure.

This is done through an automatic application of Poisson image editing [10].
The bright region, Ω ⊂ R2, is extracted from the image as the non-zero elements
of a mask image M = ((I > τ1)⊕B) ∧ (I > τ2), where the intensity thresholds,
τ1 and τ2, are chosen such that τ1 > τ2 and ⊕B is a dilation with a circular ball
of radius 7. We then seek to find the adjusted image intensities, f : Ω 7→ R,
such that the boundary of Ω matches the surrounding image region and so
that the gradient within Ω is similar to high pass version of the image. Letting
g(x) = (I −Gσ ∗ I)(x), be the high pass filtered image, with Gaussian Gσ, the
problem of recovering the intensities is posed as a minimization:

E(f) = min

∫
Ω

|∇f −∇g|2dx where f = I on δΩ. (3)

The minimizer of (3) a solution to the Poisson equation:

∇2f = ∇2g. (4)

We apply the normalization per slice and empirically found σ = 4 to be a good
value for the the filtering. Figure gives an example of the Poisson editing on slice
19 of Case04 from the Promise12 training set.

2.2 Shape Modeling

In order to build the statistical model, the binary input training segmentation
masks are first converted to a mesh representation using marching cubes. The
resulting meshes are then evenly spherically sampled and brought into alignment
using iterated closest points. The result is a single set of triangles, T , and the
M vertex positions Vi = {vij}Mj=1, for each training image, i.

Using these corresponding shapes, orientation and scale variation are re-
moved using Procrustes analysis, which gives a mean shape, V̄ = {v̄j}Mj=1, and



the orientation, ri, scale, si, and translation, pi that best map the mean shape
to the input meshes, Vi. The remaining variability in the shape is represented
with a point distribution model, and the strongest shape modes, Ui = uik are
extracted through PCA. A shape can be represented as a linear combination of
the modes, blended with the shape coefficients, λk:

vj = v̄j +
∑
k

ukjλk. (5)

For efficiency, two levels of a mesh hierarchy are used, the finer resolution
has 1127 vertices & 2250 triangles, and the coarser resolution has 565 vertices
& 1126 triangles. The coarser resolution is obtained by downsampling the mean
shape and extracting the corresponding vertices.

2.3 Marginal Space Learning

During testing on an unseen image, I, an initial segmentation is obtained by
aligning the shape model to the image data. We use Marginal Space Learning
(MSL) [8] to recover these unknown pose parameters and the first 3 shape
coefficients, λ1:3, for the test image by approximating the posterior:

θ = (p, r, s, λ1:3) = argmaxp,r,s,λ1:3
Pr(p, r, s, λ1:3|I). (6)

Instead of searching all parameters simultaneously, MSL decomposes the search
space into subsequent estimates of 3D searches over position, orientation, and
scale. The position is first isolated, and the posterior, Pr(p|I), is approximated
using a discriminative classifier,

Pr(p|I) = Pr(y = +1|I,p), (7)

where the binary random variable, y, takes a value of +1 if the prostate is at
position p in image I. In other words, a set of likely candidate positions can be
obtained by scanning a classifier over the image.

Given these position estimates, orientation can be estimated in a similar
manner,

Pr(r|I,p) = Pr(y = +1|I,p, r), (8)

where the search augments each of the position candidates with the plausible
set of orientations learned from training data. Scale and the first three PCA
components are estimated analogously.

Training For each of the discriminative classifiers (position, orientation, scale,
and PCA), a probabilistic boosting tree (PBT) [11] is trained using the known
poses and image data in the training set. For the pose estimation, in training and
testing, the volume data is resampled to be 2mm isotropic. Position detection
uses 3D Haar features, and, to train the binary classifiers, positive instances are
sampled within a 7mm range of the true position and negatives are sampled
randomly from regions greater than 15mm away. Orientation, scale, and PCA
estimates use steerable features sampled within a bounding box of the oriented
cube. See ref. [8] for more details.



Fig. 4. The surface of the prostate is partitioned to allow for region specific classifiers.

2.4 Boundary Deformation

The pose estimated using MSL aligns the shape model to the image, giving a
good initial segmentation. The mesh surface is then iteratively refined using a
non-rigid, hierarchical boundary deformation [7]. Each mesh vertex is displaced
vi ← vi + tini along the surface normal, ni, by finding the most likely displace-
ment:

ti = argmax−τ≤t≤τPr(vi + tni|I), (9)

where Pr(vi + tni|I) is again modeled with a discriminative classifier, and the
search for the best displacement is limited to the range τ . After displacing each
point independently, regularity is imposed by projecting the resulting shape onto
the linear shape space.

The boundary refinement takes place first on the low resolution mesh and
2mm isotropic volumes. In a subsequent phase, the mesh is upsampled and a
finer scale refinement is performed. We perform 10 iterations at each level of the
mesh hierarchy, reducing τ by a factor of 0.8 each iteration.

For the higher resolution mesh, in order to account for the varying surface
appearance on different regions of the boundary, separate boundary classifiers
are utilized [7]. Specifically, the prostate surface is partitioned into 6 regions near
the bladder, rectum, peripheral zone (Figure 4).

Training The discriminative model in (9) also uses a PBT classifier and steer-
able features. Positive samples for the classifier are taken to be ground truth
mesh points, and negatives are chosen within a predefined distance from the
mesh. The sampling pattern of the steerable features and the negative range are
optimized using a testing set.

3 Experimental Design

To train our algorithm we used 10-fold cross validation on the training set avail-
able from the Promise12 data set1. The data consists of 24 cases with endorectal
coil and 26 cases with body coil, with a mean resolution of 0.49×0.49×3.27mm.
For the final submission, we trained on the entire set of 50 volumes.

1 http://promise12.grand-challenge.org

http://promise12.grand-challenge.org


Table 1. Segmentation accuracy using 10-fold cross-validation (CV) with and without
image normalization, and the testing on training results for the entire data set (All).

Image PCA Detection Low-res boundary Hi-res boundary
Data Norm. MSE Dice MSE Dice MSE Dice

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

CV No 4.02 3.46 0.71 0.74 2.43 1.87 0.83 0.85 2.11 1.51 0.85 0.88
CV Yes 4.20 3.65 0.70 0.71 2.34 1.94 0.83 0.84 1.91 1.49 0.86 0.89
All Yes 2.45 2.22 0.82 0.83 1.71 1.64 0.87 0.88 1.42 1.35 0.89 0.90

For evaluation, we compute the symmetric mean surface-to-surface distance
(MSE) between two surfaces X and Y as:

dmse(X,Y ) =
1

2
(d(X,Y ) + d(Y,X)) (10)

where d(X,Y ) =
1

|X|
∑
x∈X

d(x, Y ), (11)

and d(x, Y ) = min
y∈Y
|x− y|. (12)

When computing dmse, the ground truth segmentation masks are first converted
to a mesh representation using marching cubes.

And we also report the dice coefficient computed on the segmented masks,
X and Y:

ddice(X,Y) = 2
|X

⋂
Y|

|X|+ |X|
. (13)

Since our segmentation is mesh-based, we first convert to isotropic masks of
0.5mm resolution to measure the dice coefficient.

4 Results and Discussion

In this section we present quantitative and qualitative results of our system on
the training data from the Promise12 website.

4.1 Quantitative & Qualitative Test Results

Table 1 illustrates the quantitative results for different phases of the algorithm
for the cross-validation (CV ) cases with and without intensity normalization and
for testing on training data (All). Notice that each phase, from pose initialization
to fine-scale boundary refinement, provides an improvement in accuracy.

We see that the image normalization appears to be detrimental in the initial
pose estimation, but gives improved results for the final segmentation. The 10-
fold cross validation with normalization results in a mean dice coefficient of 0.86
and a median dice coefficient of 0.89. In the CV configurations, Case23 fails to
be detected, causing an increase in mean error. The reason for this failure is that
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Fig. 5. Qualitative results on axial slices of 3 unseen test cases from the Promise12
challenge.

Case23 has an abnormally large volume of 315ml vs the median volume of 43ml.
Ensuring that the training data has large enough variation resolves this issue
(as seen in the test on training case, row All). In our experience an increased
amount of training data is important for robust pose detection but less so for
improvement in the boundary detection.

Figure 5 illustrates some of the results on the unseen test cases.

4.2 Implementation & Runtime Details

All of our experiments have been run on a 2 processor Intel(R) Xeon(R) 2.7
GHz CPU with 72.0GB of RAM and running Windows Server 2008. In total,
the system has 12 cores. With hyper-threading a maximum of 24 threads are
used.

Implementation Details Our segmentation algorithm is implemented within
a modular C++ software library for detection and segmentation of medical imag-
ing [12]. Our implementation links to VXL and boost and also uses OpenMP for
fine-grained parallelization of both the training and the testing. While it is also
possible to use the GPU for acceleration, we have not done so in this paper. The
intensity normalization component is not yet optimized and is implemented as
a preprocess in Matlab.

Runtime and Resource Usage Using the system detailed above, training all
the detectors takes 2 hours on the entire training set. Intensity normalization
takes about 1.2s/volume (on average) in Matlab 2. Running the full detection
and segmentation up to the fine-scale boundary takes a total of 1.1s per volume.
(segmentation up to the coarse level boundary detection only takes 0.6s). The
peak memory usage while running all of the 30 unseen test cases was 86 MB.

2 Assuming only the ERC images need the Poisson normalization



5 Concluding Remarks

We demonstrated the effectiveness of learning-based methods for fast and accu-
rate segmentation of prostate in MR scans. Overall, our system behaved well on
the Promise12 data, and we have shown that our segmentation can serve as a
replacement (or initialization) for slower registration-based methods.
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