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Abstract. We describe a deep learning method for automatic prostate MRI 

segmentation that uses convolutional neural networks (CNNs), based on a UNet 

architecture with the addition of residual shortcuts. The model was trained and 

tested on the data from the PROMISE12 challenge.  

 

 

1 Introduction 

Convolutional neural networks (CNNs) have yielded high accuracies for automatic 

prostate segmentations and cancer detection from MR images [1-3], using a variety of 

network architectures. In this paper, we evaluate a CNN architecture based on a UNet, 

proposed previously for the segmentation of transrectal ultrasound images of the pros-

tate [4], for automatic segmentation of the prostate gland in MR images from the da-

taset in the PROMISE12 challenge [5]. We report the accuracy of the CNN-based 

method based on a 10-fold cross-validation using the publicly available training im-

ages and ground-truth segmentation from the challenge.  

 

2 Methods 

2.1 Data and Pre-processing 

The PROMISE-12 challenge provides 50 T2-weighted MR prostate images with 

corresponding segmentations, as ground-truth, and an independent set of 30 MR im-

ages without ground-truth segmentations, for the purposes of training and evaluation 

of segmentation algorithms, respectively [5]. All images were normalised to have zero 

mean with unit variance intensity and resized to a volume size of 18118130 voxels. 



 

2.2 Network Architecture  

The proposed ‘Adapted UNet’ algorithm uses a fully-convolutional 3D neural net-

work based on a UNet architecture [6], with three modifications; First, convolutional 

layers are replaced by residual network blocks after each down- or up-sampling block. 

Second, concatenation is replaced by summation shortcuts before each down-

sampling block to the output feature maps, and thirdly, incorporation of additive up-

sampling shortcuts. The network takes a volume of size S0=18118130 as input and 

propagates to feature maps of the same size with 8 initial channels using a convolu-

tion (Conv), a batch normalisation (BN) and a nonlinear rectified linear unit (ReLU). 

The resulting architecture is shown in Figure 1. All the convolution kernels are of size 

333. The feature maps are then down-sampled to K=5 different resolution levels by 

down-sampling blocks and each followed by a residual network unit (Resnet) block. 

For each level k, where k=1, 2, ..., K, the number of channels is doubled and size is 

halved. Each down-sampling block consists of Conv, BN and ReLU, followed by a 

max-pooling layer with stride 2, whilst each Resnet block has two Conv layers with 

BN and ReLU, and an identity shortcut over these layers. Reverse Resnet blocks are 

also included with the addition of additive up-sampling shortcut layers over the trans-

pose convolution (Deconv) layers [7]. 

 
Figure 1: Architecture of the adapted UNet convolutional neural network. sk  and nk denote 

different activation map sizes and number of channels. 

 

2.3 Implementation Details and Training 

The network described above was implemented in TensorFlow
TM 

and trained on a 

12GB NVIDIA
®
 Titan GPU using a minibatch size of 4. The results presented in this 



work were obtained by minimising a negative probabilistic Dice score. The Dice 

score is differentiable with an added L
2
-norm weight decay on the trainable parame-

ters, with the weighting parameter being set to 110
-3

. The network was trained for a 

total of 5000 iterations using the Adam optimiser with a learning rate of 0.01. 

 

2.4 Performance Testing 

To test the network performance during algorithm development, we used 10-fold 

cross-validation experiments with the 50 images that have available corresponding 

reference standard segmentations from the challenge training dataset. For each fold, 5 

images were “left-out” and used for testing while the remaining 45 images were used 

to train the network. The Dice score and symmetric boundary distance were calculat-

ed as the measures of segmentation accuracy. The symmetric boundary distance is 

defined as the average of the mean absolute value of the distances between all the 

points from the automatically segmented boundary and the closest boundary points 

found on the left-out ground-truth, and vice versa.    

3 Results 

The mean (standard deviation) values of the Dice score and boundary distance 

over all the folds were 0.84±0.08 and 2.51±1.23mm, respectively. For illustration 

purpose, the automatic segmentations output by the network on the testing dataset for 

three arbitrarily chosen MRI slices, overlaid on the original images and compared 

with the ground-truth segmentations are shown in Figure 2. The submitted segmenta-

tions on the challenge test image data were obtained by one network trained using all 

50 images and corresponding segmentations from the challenge training dataset.   

 

 

Figure 2: Automatic (blue) and manual segmentations (red) shown as overlays on three MRI 

slices. 
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