Prostate MR Image Segmentation Method Using 3D U-net with skip connection

Wanli Chen^{a,1}, Yue Zhang^{a,b,1}, Yifan Chen^c, Hongjian Shi^{a,*}, Xiaoying Tang^{a,*}

^aDepartment of Electrical and Electronic Engineering, Southern University of Science and Technology, China

Abstract

This document briefly describes techniques we used in automatic segmentation of the prostate in transversal T2 MRI for the PROMISE12 challenge. We trackled this problem using U-net enhanced by designed dense block.

1. Data Preprocessing

Uniform size. To unify the image sizes, we resized and cropped the 3D MRI images to be of size 256×256 .

Gaussian normalization. Gaussian normalization was then applied to rescale the voxel intensities to has a zero mean and a unit variance.

Data augmentation. Training set has about 143 3D images with corresponding masks. Therefore, data was augmented to 1200 by random rotations, shifts. zooms, flips and elastic deformations.

2. Network architecture

Our network is trained with U-net [1], and skip connection inspired by [2].

^b Department of Electrical and Electronic Engineering, The University of Hong Kong, China ^c Faculty of Science and Engineering, The University of Waikato, New Zealand

^{*}Corresponding author

Email addresses: shihj@sustc.edu.cn (Hongjian Shi), tangxy@sustc.edu.cn (Xiaoying Tang)

¹Equal contribution

The U-net consists of a down-convolutional part (left side) and up-convolutional part (right side). The left side aims at extracting features for classifying each voxel into one or zero. The dense block connects each layer and its subsequent layer in a feed-forward fashion.

3. Implementation Details

The proposed method was implemented in Python language, using Keras with Tensorflow backend. All experiments were conducted on a Linux machine running Ubuntu 16.04 with 32 GB RAM memory. The U-net training was carried out on a single GTX 1080 Ti with 11 GB RAM memory.

References

- [1] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical image computing and computer-assisted intervention, Springer, 2015, pp. 234–241.
- [2] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, C. Pal, The importance of skip connections in biomedical image segmentation, in: Deep Learning and Data Labeling for Medical Applications, Springer, 2016, pp. 179–187.