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1. Introduction 

In this paper, we will propose an automated method which combines multilevel features 

in deeper manner for prostate segmentation from MR image. As the paper is preparing, 

we will roughly describe our algorithm and the detailed full paper will be uploaded 

after publication. 

2. Method 

Our proposed propagation deep neural network (P-DNN) adopts prostate MR transver-

sal image as input, and directly outputs pixel-wise segmentation map to estimate the 

likelihood of being foreground/background pixel by pixel. To segment a 3D prostate 

image volume, the corresponding transverses can be fed into P-DNN iteratively and the 

segmentation result is the stack of the outputs from P-DNN. 

2.1. Architecture of P-DNN 

 

The proposed P-DNN is consisted of three blocks: convolution and pooling layers (CP-

layers), propagation layer (P-layer), and F-measure loss layer (L-layer). The convolu-

tion layer convolves input image to produce output feature maps, with a set of learnable 

filters. Each filter is small spatially along width and height, thus captures and convolves 

local information slidingly at all locations of the input image. More deeply and intui-

tively, the convolution is conducted layers by layers so that the obtained final feature 

maps are more intrinsic and comprehensive. The pooling layers are usually added dur-

ing the forward pass in the convolution layers, which decrease the resolution of the 

feature maps to make them less sensitive to input shift and distortions [1]. There are 

many off-the-shelf convolutional DNN models which can be employed in this work, 

including normal models (e.g. AlexNet [2] and Overfeat [3]), deeper models (e.g. VGG 

[4]) and extremely deeper models (e.g. ResNet [5]). Considering both the accuracy and 

efficiency of our method, we typically employ one of the most popular deeper models, 

i.e. VGG16 [4], as the base structure to form our P-DNN in this work. In order to ease 

the way of error backpropagating from our later proposed P-layer to CP-layers in the 

training phase, we tend to train an end-to-end convolutional network which directly 

produces the rough pixel-wise recognition maps from CP-layers. Fully convolutional 

networks (FCN) [6] makes such end-to-end training possible through converting the 



fully connected layers of off-the-shelf DNN model into convolutional ones with 1×1 

filter. By doing so, the structure of FCN-VGG16 [6] is shared to form the CP-layers. 

 

After the CP-layers, the obtained recognized regions will propagate toward their 

surroundings through P-layer to have a finer segmentation map. This finer segmenta-

tion map will be then evaluated by manual labels in our proposed L-layer, and the cor-

responding errors will be backpropagated through the whole P-DNN to enable the fil-

ters update. 

 

2.2. Propagation Layer 

 

In the CP-layers, the input image and the sequent feature maps are forward passed into 

totally 5 pooling layers to explore high-level semantic information of image. However, 

such pooling process causes the obtained feature maps to be of 32× subsampled reso-

lution, in which the image details especially the prostate boundary information may be 

lost. In order to solve this problem, we (1) combine the predictions from the penultimate 

layer of CP-layers and the POOLING4 layer as suggested in [6]; and (2) propose the 

propagation layer to finely delineate the prostate boundaries as follows. 

While the feature maps from CP-layers are the highly convolved information of 

original images, we utilize appearance cues in P-layer since they are less sensitive to 

spatial variance but more intuitively describe the observations of original images. Spe-

cifically, the image is segmented into 𝑁 superpixels via SLICO algorithm [7]. For each 

superpixel 𝑝, we calculate the three types of low-level cues, i.e. intensity, texture and 

gradient. Intensity cue of 𝑝 , noted as 𝐼𝐶(𝑝), is the intensity histogram with 32 bins, 

thus we have 𝐼𝐶(𝑝) ∈ ℝ1×32 . Texture and gradient cues of 𝑝, noted as 𝑇𝐶(𝑝) and 

𝐺𝐶(𝑝), are described by the rotation-invariant Gabor-LBP (RGLBP) feature [8] and 

multi-coordinate HOG (MCHOG) feature [8] respectively. As RGLBP and MCHOG 

features are originally designed for biomedical image patches, we extract them from 

the bounding box of 𝑝 to approximate 𝑇𝐶(𝑝) and 𝐺𝐶(𝑝). According to [8], we have 

𝑇𝐶(𝑝) ∈ ℝ1×108 and 𝐺𝐶(𝑝) ∈ ℝ1×36. The three cues are then normalized to have a 

common sum value 1, and concatenated as 𝐶(𝑝) ∈ ℝ1×176 to represent the appearance 

of 𝑝. 

Afterwards, an undirected graph 𝒢 = (𝒱, ℰ) can be constructed over the input im-

age 𝐼𝑀. 𝒱 is the node set consisted of all superpixels of 𝐼𝑀. ℰ is the edge set encoding 

the distance of two superpixels, which is measured by the histogram intersection using 

the appearance cues, and thus the associated adjacency matrix 𝑊 ∈ ℝ𝑁×𝑁 of 𝒢 is de-

fined as 

 

𝑊𝑖𝑗 = 𝛿(〈𝑝𝑖 , 𝑝𝑗〉 ∈ 𝒩) × (1 −
∑ min (𝐶(𝑝𝑖)𝑧 − 𝐶(𝑝𝑗)𝑧)𝑧

3
) (1) 

 

where 𝒩 is the set of all neighboring superpixels pairs in 𝐼𝑀 and 𝐶(𝑝𝑖)𝑧 is the value 

of the 𝑧-th bin in 𝐶(𝑝𝑖). 𝛿(∙) is 1 if the condition inside the parentheses is true and 0 

otherwise. Since the graph 𝒢 and the corresponding associated adjacency matrix 𝑊 are 



specified, the obtained recognized regions (those superpixels with high probabilities 

being prostate) from CP-layers can be propagated into other regions to re-estimate the 

likelihood of being prostate within superpixel scale. By doing so, we have a pixel-wised 

propagation map 𝐺 which encodes the image appearance cues on the basis of the output 

from the previous highly convolutional layers. 

 

2.3. F-measure Loss Layer 

 

The output of P-layer, denoted as 𝑆𝑜𝑢𝑡
𝑃−𝑙𝑎𝑦𝑒𝑟

, is the corresponding segmentation map of 

𝐼𝑀 in our method. To update the learnable filters, 𝑆𝑜𝑢𝑡
𝑃−𝑙𝑎𝑦𝑒𝑟

 will be forward passed into 

a loss layer, with a particular loss function, for the calculation of the segmentation errors 

according to manual labels. Theoretically, most classical loss functions (such as multi-

nomial logistic loss and L2 loss) can be employed here. However, as the foregrounds 

only cover the relatively small regions across the entire prostate MR images, either 

multinomial logistic loss or L2 loss may lead the model to get trapped into local minima 

since they treat the false-positive and false-negative pixels equally. Inspired by the F-

measure theory [9] in statistical analysis, we propose an F-measure based loss function 

to get rid of the local minima. 
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