
Automatic 3D segmentation of pulmonary lobes
using progressive dense v-net

Abdullah-Al-Zubaer Imran1, Ali Hatamizadeh1, Shilpa P. Ananth2, Demetri
Terzopoulos1,2, Xiaowei Ding1,2, and Nima Tajbakhsh2

1 University of California, Los Angeles, Los Angeles, CA 90095, USA
2 VoxelCloud Inc. , Los Angeles, Los Angeles, CA 90024, USA

[This report contains a short description of our lobe segmentation
model. Our complete paper is currently under peer-review. Once the
review finishes, this report will be replaced by the full paper.]

1 Algorithm-Checklist

Give the overall structure of the algorithm. Does your algorithm
search for boundaries or fissures? Does it use airway or other in-
formation? Does it use an atlas and/or region growing? our algorithm
is an end-to-end deep-learning based network which utilizes 3D context of the
input and is supervised at different resolutions without the need for any prior
knowledge of airways/vessels or anatomical knowledge or atlases.

Briefly describe each step in the structure of the algorithm (If appli-
cable, which type of algorithms were used for preprocessing? How are
different types of information combined?) We propose an end-to-end so-
lution for automatic lung lobe segmentation in CT scan images via a progressive
architecture inspired by dense V-networks, as depicted in Fig. 1. In its architec-
ture, the proposed method employs convolutional layers, dense feature blocks,
convolutional downsampling, and upsampling. In each convolutional layer, 3D
convolutional operations are followed by batch normalization and rectified linear
units (ReLu), while in each dense feature block, every layer is connected with ev-
ery other layer in a feed-forward manner, resulting in each layer receiving the fea-
ture maps of all the preceding layers as an input. In addition, batch-wise spatial
dropout is incorporated for regularization purposes. The inputs to the network
are first down-sampled using a strided convolutional layer, and then passed to
the dense feature blocks. Consecutively, the outputs of the dense feature blocks
are utilized in low and high resolution passes via convolutional down-sampling
and skip connections. This enables the generation of feature maps at three dif-
ferent resolutions. The outputs of the second and third dense feature blocks’
skip connections are further up-sampled in order to be consistent with the size
of the output in the first skip connection. These feature maps are concatenated



2

Fig. 1. Architecture of the progressive dense V-network.

and passed to a convolutional layer followed by a softmax layer, which outputs
the probability maps. At each stage, we define three separate dice loss layers, as
discussed in the subsequent section, with the aim of progressively improving the
previous outputs. All the convolutional down-sampling layers have a kernel size
of 3× 3× 3 with strides of 2, except for the initial convolutional down-sampling
layer, which has a kernel size of 5 × 5 × 5. In addition, each of the employed
dense feature stacks has 2, 4, and 8 output channels for high, medium, and low
resolution stacks, respectively, with a kernel size of 3 × 3 × 3 and a stride of 1.
All the Skip layers have a kernel size of 3 × 3 × 3 and a stride of 1.

Volumetric predictions with the same spatial resolution as with the corre-
sponding ground truth are fed into each of the loss functions. Such predictions
denote the probabilities with which each voxel belongs to the corresponding
class. Since the background region often occupies more volume in comparison
to the foreground, we employ a dice loss function which directly maximizes the
similarity between the predicted values and the ground truth over all voxels for
a multi-class segmentation task:

D =

L∑
l=1

∑N
i plig

l
i∑N

i (pli)
2 +

∑N
i (gli)

2
, (1)

where N is the total number of voxels, L is the number of classes, pli denotes the
predicted probabilities for each class, and gi denotes the corresponding ground
truth for each class.

List limitations of the algorithm. Is the algorithm specifically designed
to segment only certain types of scans? Is your algorithm intended
for segmenting pathological lungs? Was it optimized to work for scans
with thick or thin slices, are other technical scan parameters expected
to influence segmentation performance? For non-pathological scans, our
model shows robustness against scan parameters such as slice thickness and



Automatic 3D segmentation of pulmonary lobes using progressive dense v-net 3

reconstruction kernel. However, we did observe slightly lower performance for
pathological cases. This trend can be explained by 1) the absence of pathological
cases in our training set, 2) the suboptimal, machine-generated ground truth that
we received for pathological cases from NIH.

Was the algorithm trained with example data? If so, describe the char-
acteristics of the training data. we selected a subset of chest CT volumes
(354 cases) from the LIDC dataset for annotation. To ensure variation in the
data, the CT scans were selected such that both challenging and visible fissures
are well-represented in the dataset. The lobe segmentation ground truth masks
were generated in a semi-automatic fashion. To mitigate a bias in the ground
truth, mask generation was performed by multiple observers and the generated
masks were later refined and validated by a radiologist.The dataset was split
into 270 training and 84 test cases. The CT scans used in the experiment have
a variable number of slices with each CT volume consisting between 100 to 672
slices of size 512 × 512 pixels. The voxel dimensions vary between [0.49–0.98,
0.49–0.98, 0.45–3.00] mm in the x, y and z axis. Therefore, the selected CT
scans used for pulmonary lobe segmentation not only exhibit varying shapes of
fissures and lobes, but also show a variable number of slices and voxel sizes.

If the algorithm has been tested on other databases, you could con-
sider including those results. the proposed algorithm has been tested on
84 cases of the LIDC data set with variable levels of fissure visibility, and we
achieved an overall dice score of 0.95 for all the lobe classes.

What is the average runtime of your algorithm, and on which system
is this runtime achieved? our method processes each 3D CT images in one
minute on average using 1 Nvidia Titan X GPU.

Is your algorithm automatic or semi-automatic? If user input is used,
how much is needed and in what way? the proposed algorithm is fully
automatic and does not require user input or interaction.


