
End-to-End lobes segmentation using  

vnet with coordconv layers 
 

Junxuan Chen, Wenjia Wang 

 

This is a brief introduction of our method. 

Give the overall structure of the algorithm. Does your algorithm search for boundaries or 

fissures? Does it use airway or other in- formation? Does it use an atlas and/or region 

growing?  

We used a fully automatic approach to the problem of the segmentation of the five pulmonary 

lobes from a chest CT scan using end-to-end Vnet with coordconv layers. To improve the 

precision, we also used the lung segmentation result . The lung lobe borders and fissure maps 

used in the auxiliary task of the network were automatically obtained from manual lobe 

segmentations. The lobes were extracted after subtracting a morphological erosion with a 

unitary square kernel to the original lobe map. The fissure dice loss was the additional loss 

output to improve the model representation and the ability to separate the lobes. Airway or atlas 

or other information didn’t been used.   

 

Briefly describe each step in the structure of the algorithm (If applicable, which type of 

algorithms were used for preprocessing? How are different types of information 

combined?). 

We proposed an end-to-end method to segment lobes from a chest CT scan. The basic 

architecture was 3D Fully Convolutional Neural Network dense Vnet, which was widely used in 

biomedical image because of its capability to solve segmentation problems relying on small sets 

of training data.  The architecture was constituted by an encoding path followed by a decoding 

path. The encoding part followed a typical CNN architecture where convolutional layers 

iteratively decreased the feature resolution while the number of channels was increased in the 

same order. Batch normalization was employed to avoid overfitting.  

To avoid wrong separation outside lung area, we used a 2D automatic lung segmentation 

preprocessing method before segment lung lobes. The outside area was background. The lung 

area must belong to five lobes classes.  

The volume regions surrounded by elements of other classes were more difficult to segment so 

we used the additional fissure dice loss to focus more attention on the fissure borders.  

By experiments we found there were wrong lobes classes between left and right lungs areas. The 

Convolutional neural network just used local information rather than global information. There 



were so many similarities in grey values and shapes and other things in left lung lobes and right 

lung lobes. To solve this problem we used coordconv layers(see figure 1) before the last 

convolutional neural network to add coordinate information.  

 

Figure 1 coordconv layers 

List limitations of the algorithm. Is the algorithm specifically designed to segment only 

certain types of scans? Is your algorithm intended for segmenting pathological lungs? Was 

it optimized to work for scans with thick or thin slices, are other technical scan 

parameters expected to influence segmentation performance? 

There were few pathological lungs in our train and test cases. In our cases the model had good 

robustness. However，there were only thick slices in our cases. We were not sure the inference 

result in serious pathological lungs. 

Was the algorithm trained with example data? If so, describe the characteristics of the 

training data. 

we selected 328 CT volumes for annotation totally, which contained 71 cases from the LUNA16 

dataset, 195 cases from LIDC dataset, 62 cases from Meinian Onehealth Healthcare Holdings. The 

CT scans used in the experiment had a variable number of slices with each CT volume consisting 

between 200 to 528 slices of size 512 × 512 pixels. We used SlicerCIP to make ground truth 

masks. 

If the algorithm has been tested on other databases, you could consider including those 

results. 

We annotated 15 lola11 cases and tested on them. Our global lobes dice was 0.948  



What is the avarage runtime of your algorithm, and on which system is this runtime 

achieved? 

The average runtime of our algorithm was 12s per case using 1 NVIDIA TESLA P100.  

Is your algorithm automatic or semi-automatic? If user input is used, how much is needed 

and in what way? 

Our algorithm was fully automatic. No user input was used. 

  


