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Abstract—Segmentation of the pulmonary lobes is relevant
in clinical practice and particularly challenging for cases with
severe diseases or incomplete fissures. In this work an automated
segmentation approach is presented that performs a marker-
based watershed transformation on CT scans to subdivide the
lungs into lobes. A cost image for the watershed transformation
is computed by combining information from fissures, bronchi,
and pulmonary vessels. The lobar markers are calculated by
an analysis of the automatically labeled bronchial tree. By
integration of information from several anatomical structures
the segmentation is made robust against incomplete fissures.

For evaluation the method was compared to a recently pub-
lished method on 20 CT scans with no or mild disease. The
average distances to the reference segmentation were 0.69 mm,
0.67 mm, and 1.21 mm for the left major, right major, and right
minor fissure, respectively. In addition the results were submitted
to LOLA11, an international lung lobe segmentation challenge
with publically available data including cases with severe diseases.
The average distances to the reference for the 55 CT scans
provided by LOLA11 were 0.98 mm, 3.97 mm, and 3.09 mm for
the left major, right major, and right minor fissure. Moreover,
an analysis of the relation between segmentation quality and
fissure completeness showed that the method is robust against
incomplete fissures.

Index Terms—lung lobe segmentation, fissure segmentation

I. INTRODUCTION

THe human lungs are subdivided into five lobes that are
separated by visceral pleura called pulmonary fissure.

There are three lobes in the right lung, namely upper, middle,
and lower lobe. The right upper and right middle lobe are
divided by the right minor fissure whereas the right major
fissure delimits the lower lobe from the rest of the lung. In
the left lung there are only two lobes, the upper and the lower
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(a) Lung lobes. (b) Vessel and bronchi tree.

Fig. 1: Renderings of the anatomy of the lungs. a) shows a
rendering of the lungs subdivided into the right upper (RU),
right middle (RM), right lower (RL), left upper (LU), and left
lower (LL) lobe. b) shows a rendering of the vessels (red)
and bronchi (blue) tree of the right lung. There are no major
supply branches at the lobar boundaries (arrows).

lobe, that are divided by the left major fissure (see Figure 1a).
A characteristic of the pulmonary lobes are separated supply
branches for both vessels and airways (see Figure 1b).

Lung lobe segmentation is relevant in clinical applica-
tions particularly for treatment planning. The location and
distribution of pulmonary diseases are important parameters
for the selection of a suitable treatment. Locally distributed
emphysema can be treated more effective by lobar volume
resection than homogeneously distributed emphysema [1].
Another application is quantitative monitoring of pulmonary
diseases such as emphysema or fibrosis. A lobe-wise analysis
shows the progression of the disease in more detail.

Computed tomography (CT) allows visualization of the
lungs within a few seconds. Since typical scans with high
anatomical details contain over 400 slices with submillimeter
resolution for each direction, manual segmentation is time
consuming and there is demand for automatic lung lobe
segmentation methods.

The segmentation of pulmonary lobes is challenging be-
cause of anatomical variation and incomplete fissures. On the
one hand, pathologies can deform the lobes and make the
fissures unrecognizable. And on the other hand, even in pa-
tients with normal lung parenchyma the fissures are often not
complete [2]. Examples of incomplete and deformed fissures
are shown in Figure 2. For cases with incomplete fissures
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(a) LOLA11 case 13. (b) LOLA11 case 48. (c) LOLA11 case 35.

(d) LOLA11 case 13. (e) LOLA11 case 48. (f) LOLA11 case 35.

Fig. 2: Anatomical variation of pulmonary lobes. Figure a),
b), and c) show a sagittal slice of the right lung. d), e), and
f) show the same slices with labeled lobes (red = upper lobe,
blue = middle lobe, green = lower lobe). a) shows a case
with a small middle lobe and incomplete fissures (arrow). b)
shows a case with a large middle lobe and pathologically thick
fissures (circle). c) shows a pathological lung with several
bright structures and incomplete fissures (arrow). Datasets are
taken from LOLA11 [3].

radiologists infer the lobar boundaries using information from
the bronchi and vessel trees. Since there are usually no major
supply branches between the lung lobes (see Figure 1b) the
lobar boundaries are defined in between the bronchi and vessel
branches.

There are several different approaches of lung lobe and
pulmonary fissure segmentation in literature. Van Rikxoort et
al. [4], Wiemker et al. [5], Wang et al. [6], Pu et al. [7], and
Wei et al. [8] presented methods for lobar fissure segmentation
in CT data. For patients with complete pulmonary fissures a
segmentation of these fissures is sufficient to obtain a lung
lobe segmentation. Since in many cases fissures are incomplete
additional processing steps are required to obtain a lobe seg-
mentation. Nevertheless, the segmentation of visible fissures
offers a good basis for lobe segmentation and can also be used
for other purposes with clinical relevance such as quantifying
the completeness of the fissures, which is an important feature
for treatment planning of patients with emphysema [9].

Van Rikxoort et al. published two different lung lobe
segmentation methods. In [10] pulmonary lobes and segments
were found by supervised classification. First, the fissures were
enhanced and segmented by the eigenvalues and eigenvectors
of the Hessian matrix. Next, features such as the position
relative to the fissures provided a labeling to a pulmonary lobe
for every voxel inside the lung. The classifier was trained on
500 CT scans with findings that were assigned to a segment

by an expert. The evaluation was done on 100 datasets with
classified findings. For the left lung, 97% of the findings and
for the right lung, 90% of the findings were assigned to the
correct lobe. It did not produce anatomically correct results
for cases with incomplete fissures.

The second lobe segmentation method by van Rikxoort
et al. [11] is an automatic multi-atlas approach. First, the
lungs, fissures, and bronchi were segmented automatically and
combined into one cost image. A fast registration of this result
with a set of five atlases with complete fissures gave the best
matching atlas that was chosen for a fine registration to get
the lobe segmentation result. The evaluation was done on two
datasets. For 20 normal dose CT scans the mean distance
to a manual fissure segmentation was 0.48 mm, 1.23 mm,
and 1.28 mm for the left major, right major, and right minor
fissure. The robustness of the segmentation against incomplete
fissures was evaluated with an observer study on 100 low dose
CT scans. Atlas-based methods are generally time-consuming,
segmentation of one case took two hours on average. Another
disadvantage of this approach was that scans with lobar shapes
not represented in the atlas set were unlikely to be segmented
correctly.

Kuhnigk et al. [12] presented a framework for automatic
lung and lung lobe segmentation. The lobe segmentation was
based on a watershed transformation that takes an analysis
of lobar airways and vasculature into account. It was robust
against missing fissures but therefore frequently inaccurate at
clearly visible fissures. The method had been applied to more
than 1000 datasets [13] but was not quantitatively validated.

Ukil and Reinhardt [14] presented a pulmonary lobe seg-
mentation similar to Kuhnigk et al. [12]. In the first step, the
lobes were segmented by a watershed transformation based
on a distance map of the vasculature and markers from the
labeled bronchi tree. In the second step, a 3D optimal surface
detection was performed in a ROI around the initial segmented
fissures to refine the lobe boundaries. As a last step, incomplete
fissures were extrapolated based on a fast-marching method.
The evaluation was done against a manual reference standard
of the visible fissures from 12 cases with normal lungs and
17 cases with mild to moderate emphysema and showed a
mean root-mean-square (rms) error of less than 2.7 mm over
all fissures of all cases. A disadvantage of the method was that
around 20-25% of the cases needed manual intervention.

Zhang et al. [15] created an anatomic atlas of the lungs
that described the average position and variation of the ma-
jor fissures from 16 CT datasets. The atlas was used for
initialization of the fissures. A ridgeness operator enhanced
the edges in the original images which offered information to
refine the initial lobar boundaries. For the segmentation of the
right minor fissure, the observer had to interactively set anchor
points. The results were compared against manual tracings on
22 CT scans with normal anatomy and showed an average
rms error of 1.96 ± 0.71 mm over all datasets. The approach
was not evaluated on cases with abnormal anatomy or severe
parenchymal diseases.

Pu et al. [16] proposed an automatic lobe segmentation
method that started by detecting plane patches in subvolumes
in the lungs. From these patches the pulmonary fissures were
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inter- and extrapolated using implicit Radial Basis Functions.
Based on the implicit functions representing the fissures, the
lungs were divided into five lobes. No anatomical information
of bronchi or vessels were taken into account in cases of
incomplete fissures. A qualitative evaluation was done by
visual inspection of two radiologist on 65 CT examinations
of healthy or mildly diseased lungs. The evaluation showed
that 50.8% of the cases were rated as ”excellent” or ”good”
by both radiologists. The method was not evaluated on cases
with severe lung diseases. Segmentation took on average 25
minutes for one case with a slice thickness of 0.625-1.25 mm.

Mori et al. [17] presented a lobe segmentation approach
based on figure decomposition. First, the pulmonary fissures
detected by an analysis of the Hessian matrix were subtracted
from the lung ROI. Next, the lungs were eroded until there
were two (in the left lung) respectively three (in the right lung)
connected components left over. Labels were assigned to the
components and the gaps were closed by dilation. Evaluation
was performed on 13 CT datasets against a manually traced
reference. The average coincident rates on the volume overlap
were between 0.94 and 0.99 for the five lobes. The approach
was not evaluated on lungs with severe diseases and it did not
work for cases with missing fissures.

Ross et al. [18] published an interactive lobe segmentation
method. An observer clicked on several parts of the fissures to
create points that were extrapolated to complete fissures based
on a thin plate spline interpolation method. Two observers
applied the method to 20 CT scans and the distances of the
results were compared. The average Euclidean distance of the
user agreement was between 2.08 mm and 4.52 mm for the
three fissures. An addition to this method was presented by
Ross et al. [19] that was also based on a thin plate spline
surface fitting but had no need for user interaction. Here,
fissure particles were automatically detected by analysis of the
eigenvalues and eigenvectors of the Hessian matrix and MAP
estimation. This approach was evaluated on six CT scans and
compared to two references created with the interactive version
of this method [18]. The average distance to the references
was between 1.78 mm and 2.95 mm for the three fissures. A
drawback of this method was that it did not work for cases
with missing fissures.

Lassen et al. [20] presented an interactive approach for lung
lobe segmentation and correction of a given segmentation. An
observer sketched the pulmonary fissure on slices of arbitrary
orientation and got instant feedback in the form of an inter-
and extrapolated fissure surface that covered the total lung.
The interactive segmentation method was evaluated on the
left fissures of 25 CT datasets against a manual segmentation
by a human observer and showed an average distance of
1.57 ± 0.3 mm.

This paper proposes an automatic lung lobe segmentation
method that uses information from automatic segmentations
of the bronchi, vessels, and visible fissures in a 3D watershed
transformation to be both robust against missing fissures and
accurate at visible fissures. Although all previously published
lobe segmentation methods described above were evaluated, it
is not possible to compare the results directly because evalu-
ation was performed on different datasets and with different

evaluation measures (volume overlap, distance to the fissures,
visual inspection).

In this paper, a direct comparison to two of the previously
published methods is made: the atlas-based method by van
Rikxoort et al. [11] and the method by Kuhnigk et al. [12].
For the direct comparison a set of 20 chest CT scans used
in the original paper by van Rikxoort et al. [11] is used.
To allow comparison to any lobe segmentation method, the
proposed method was applied to a publicly available database
from an international challenge for lung and lobe segmentation
called LOLA11 [3]. LOLA11 provides 55 CT scans from
different hospitals and scanners including lungs with severe
pathologies. Participants can download the data and will get
evaluation results after uploading the segmentation results.
Submitted segmentation results are compared against a manual
lobar border segmentation from a radiologist. Within the scope
of LOLA11 a fair comparison of segmentation approaches is
possible since all methods are evaluated on the same dataset
with the same evaluation measures. The challenge is still open
and offers an excellent opportunity to compare segmentation
quality. Next to the evaluation measures provided by the
LOLA11 challenge, we analyzed the segmentation accuracy
in respect of the fissure completeness for the 55 cases of
LOLA11.

II. METHOD

A lobe segmentation method is developed which combines
anatomical information from the lungs, vessels, airways, and
lobar fissures to obtain the lobes using a watershed-based
segmentation method. The approach is an extension of the
framework of Kuhnigk et al. [12] which performs a watershed-
based lobe segmentation that does not make use of the lobar
fissures and airways for construction of the cost image for
the watershed segmentation. A preliminary version of the
here presented approach without an extensive evaluation was
previously published in [21] and [22].

Figure 3 provides an overview of the segmentation process.
The method starts by segmenting the lungs, vessels, airways,
and fissures, which are later combined into one cost image for
the watershed segmentation process (Section II-B). In the first
step lungs are segmented since all other segmentations are only
performed inside the lung regions. A good lung segmentation
is a prerequisite for the here presented lobe segmentation
approach. The lung segmentation applied achieved the best
performance in the LOLA11 [3] challenge. It is based on
previous work [22] and therefore not described in this paper.
Sections II-A1, II-A2, and II-A3 describe the segmentation of
the vessels, fissures, and bronchi. Note that any vessel, airway,
or fissure segmentation could be plugged into the method
without adaptation.

A. Prerequisite segmentations

1) Pulmonary vessels: Based on the assumption that there
are usually no major vessels at the lobar boundaries, the
distance to the pulmonary vasculature is a suitable feature to
detect lobar boundaries. To quantify the absence of vessels at
the lobar boundaries, a coarse segmentation of the pulmonary
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Fig. 3: Schematic diagram of the automatic lobe segmentation algorithm. From the original chest CT scan four features are
extracted to calculate the cost image for the watershed transformation: a) the original data with the blood vessels masked out
b) the pulmonary vasculature c) the bronchial tree and d) the pulmonary fissures. A distance transformation is calculated from
e) the vasculature, f) the bronchial tree and g) the fissures (inverted and squared) to get local maxima at the lobar boundaries.
All four inputs are equally weighted to obtain the cost image for the watershed transform. Markers for the lobes are calculated
automatically from the bronchial tree.

vasculature is sufficient. There is high contrast between blood
vessels and lung parenchyma that enables a coarse segmenta-
tion of the pulmonary blood vessels by thresholding the data
inside the lung region. The goal is to include as many vessels
as possible but exclude fissures and other dense structures.

Before thresholding a downscaling with clamping is applied
to reduce memory requirements. With the following equation
the dataset vorig is scaled down to the 8-bit range [0, 255],
where 255 marks voxels outside the lung mask L:

vds =

{
max(0,min(254,

vorig+1024
4 )) v ∈ L

255 otherwise.
(1)

The resulting dataset vds is thresholded to receive the
vesselmask V .

V = 130 ≤ vds < 255. (2)

The fixed threshold of 130 (=̂ 504 HU) was empirically
estimated on an independent dataset and proved to be a good
tradeoff between sensitivity and specificity.

After the thresholding, a connected component analysis
filters out structures with a volume of less than 2 ml to separate
the interconnected vasculature from smaller, isolated high-
density structures such as thickened parts of the fissures.

2) Pulmonary fissures: The first step of the fissure segmen-
tation process is an enhancement of the fissures based on the
eigenvalues of the Hessian matrix that gives a fissure prob-
ability for each voxel. The relation between the eigenvalues
|λ1| ≤ |λ2| ≤ |λ3| of the Hessian matrix H describes the
local image structure [5]. In this work, H is calculated using
a derivative-of-Gaussian approach with σ = 1.0 mm. Fissures
can locally be modeled as a sheet where the eigenvalue
orthogonal to the fissure plane is large, and the other two
eigenvalues are small. Thus, on the bright fissures, the ideal
relationship is defined as |λ1| = |λ2| = 0 and λ3 ≪ 0.

The here presented fissure enhancement approach charac-
terizes fissure voxels as follows: 0 ≪ |λ3| < δ and |λ2| ≈ 0,
where δ describes the |λ3| value for vessels. δ is introduced
to discriminate between fissures and vessels since vessels
usually exhibit a larger |λ3| compared to fissures because of
their stronger image contrast. From these characteristics two
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Fig. 4: Plot of FStructure and FSheet. X-axis refers to |λ3| for
FStructure and to |λ2| for FSheet.

features are derived (Fig. 4):

FStructure = Θ(−λ3)e
−(λ3−α)6

β6 (3)

FSheet = e
−λ6

2
γ6 . (4)

FStructure rates the strength of image structure. Because
the intensity of the fissure structure varies both between
patients and also within a single dataset, a wide interval of
intensities for high fissure probability is defined. This is done
by calculating the sixth power which results in a smoothed
rectangular-like curve (see Figure 4). In order to estimate
suitable values for α and β we analyzed |λ3|-values of five
datasets with given fissure and vessel mask that were not used
for evaluation in this paper. The analysis revealed that fissure
voxels show |λ3|-values between 20 and 80. Vessels show
much higher |λ3|-values but the |λ3|-values of small vessels
can go down to around 60. Since we prefer sensitivity over
specificity we choose α = 50 and β = 35 for the distribution
function of FStructure. Thereby, voxels with a |λ3|-value
between 30 and 70 are assigned a high fissure probability
whereas voxels with a |λ3|-value & 100 are excluded from the
fissure segmentation (see Figure 4). False positive results are
discriminated later by combination with the FSheet feature.
The term Θ(−λ3) describes a heaviside function that sets
FStructure to 0 for voxels with λ3 ≥ 0, i.e., a dark structure
on a bright background is not a fissure.

The FSheet feature discriminates between a sheet structure
and other structures such as nodules or vessels, as these latter
structures have larger |λ2| values. γ is empirically set to 25 by
investigating typical values for fissures and other high-contrast
structures within the lungs of the five test datasets not used for
evaluation of this paper. Thus all voxels with a |λ2| value & 30
are assigned to a probability of 0 and are therefore excluded
from the fissure segmentation (see Figure 4). FStructure and
FSheet are in the range [0, 1]. The two features are combined
to the overall fissure similarity measure SFissure:

SFissure = FStructure FSheet. (5)

The result of the fissure enhancement is for each voxel a
fissure similarity value between 0 and 1. An example of fissure
enhancement can be seen in Figure 5b.

The result of the fissure enhancement are converted to a
segmentation of the lobar fissures that are required as input

(a) Original data. (b) Fissure
Enhancement.

(c) Fissure
Segmentation.

Fig. 5: Axial view of the two-step fissure segmentation for
LOLA11 case 1.

for the watershed lobe segmentation. A mask C is constructed
which describes all candidate fissure voxels that fulfill two
constraints. The first constraint is a minimal fissure similarity
SFissure and the second constraint demands an intensity value
in a defined range:

C = [SFissure > 0.1 ] ∧ [Iv < (µvessel − 2σvessel)], (6)

where µvessel and σvessel are the mean intensity and standard
deviation of vessel voxels, respectively. These parameters
are estimated individually for each CT scan by a histogram
analysis of the segmented vessels (see Section II-A1). The
purpose of the gray value information is to exclude vessels
which usually have higher intensities than fissures and are not
already excluded by FStructure.

The resulting mask C contains spurious responses on small
plate-like structures. To obtain the final fissure segmentation
we use a vector-based connected-component analysis. The
largest eigenvalue of a sheet is perpendicular to the plane.
Thus, the corresponding eigenvector of the largest eigenvalue
shows the orientation of a structure. The curvature of a fissure
is locally low, so adjacent fissure voxels have similar largest
eigenvectors. Taking advantage of this property, a 3D vector-
based connected component analysis with a 6-neighborhood is
applied on the candidate voxels in C, similar to van Rikxoort
et al. [10]. The similarity is calculated by the inner product
of the normalized eigenvectors, so that the inner product is
1 for identical vectors. Since pulmonary fissures are usually
slightly bent, the inner product for fissure voxels can be
slightly smaller than 1. Empirical analysis showed good fissure
segmentation results for joining adjacent voxels inside mask C
with an inner product ≥ 0.98 to a connected component. All
3D components with a volume of at least 0.1 ml are kept
to obtain all significant fissure parts and remove most of the
noise. Afterwards, a morphological closing with a cubic kernel
of 3 x 3 x 3 voxels is applied to close minor gaps. Figure 5c
shows an example of a fissure segmentation result.

3) Bronchi: Since each lobe is separately supplied by
subtrees of the bronchial tree, distance to the bronchi is a
suitable feature to detect lobar boundaries, similar as for the
vessels. In CT images, the airway lumen is dark and separated
from the parenchymal tissue by thin airway wall structures that
appear brighter. Segmentation of the airways in CT images
is challenging because often the parenchymal fissures have
similar HU values as the lumen, and both partial volume effect
(PVE) and noise obscure the airway walls. We apply two
preprocessing steps to mitigate these problems and to facilitate
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(a) From the center voxel the
maximum intensities (dotted

border) are calculated for all of
the 8 rays (yellow arrows).

(b) Nine cutting planes in which
the ray casting is applied.

Fig. 6: Bronchi enhancement filter.

the segmentation of the bronchi. First, to reduce noise, a
Gaussian smoothing with fixed kernel width (σ = 1.0 voxel) is
applied to the image although the blurring increases the partial
volume related problems.

Second, a bronchi enhancement filtering is applied to the
blurred image. Partial volume effects and the additional Gaus-
sian blurring let the lumen of small airways appear brighter
than normal air. The goal of the bronchi enhancement filtering
is to detect voxels that are surrounded by dense circular
structures as bronchi and to revert these volume averaging
effects by decreasing their density again. For bronchi that
are orthogonal to the axial plane the following approach en-
hances bronchi voxels. For each voxel the maximum intensities
maxa−h for 8 homogeneously distributed inplane rays with
a length of 3 voxels are calculated (see Figure 6a). The
following equation provides high values for bronchi voxels
bronchibright = avg(maxa−h) − V ar(maxa−h) − vorig .
Including the variance ensures that only voxels that are evenly
surrounded by bright voxels are enhanced. And the subtraction
of the original image vorig suppresses filter responses in
homogenous dense regions. Since only a few bronchi are
orthogonal to the axial plane this process is repeated for 8 more
planes: sagittal, coronal, and 6 diagonal planes (see Figure
6b). Only the planes that cut through the bronchi show high
responses. Thus, from the 9 filter responses bronchibright1−9

the average of only the 3 largest responses is calculated and
set as the voxel value in the enhancement image. In the last
step the enhancement image is subtracted from the original
image to get dark values inside the bronchi.

A 3D region growing algorithm is used to extract the airway
lumen from the preprocessed image. The region growing is
initialized by detecting the trachea. A 2D connected compo-
nent analysis of the airspace mask finds trachea candidates
and the components that overlap in z-direction are selected
to be the trachea [23]. Starting from the position of the
minimum gray value within the trachea, the segmentation
threshold is iteratively increased and the segmentation volume
is monitored. The steepest slope of the observed threshold-
volume-curve within the interval of 10 − 150 ml is searched
and the threshold below this step is used as the final region
growing threshold.

In images with high noise levels, this segmentation mask is

(a) Analyzed airway tree (b) Lobar cones

Fig. 7: Result of the bronchi segmentation after lobar bronchi
analysis (a) and the resulting lobar cones (b) that are used for
lobe marker generation.

likely to contain holes, especially in the larger airways. Since
this may negatively impact subsequent graph construction, a
second segmentation mask is created from the original CT data
specifically for segmenting large airways. For each voxel, the
average of minimum and maximum voxel intensities within
a resolution-dependent neighborhood (2/1/0 voxels in each
direction for an image resolution of ≤1mm/≤3mm/>3mm)
is calculated. Afterwards, the same iterative region growing
as before is applied with slightly decreased thresholds of
5− 100 ml. The segmentation masks are then combined with
a union operation.

While the analysis of the threshold-volume curves is able
to detect larger leaks in almost all cases, smaller leaks may
still be present in some region growing results. In order to
remove these, local structure sizes are estimated by means
of a Euclidean distance transform of the segmentation mask
and compared to the size of their smallest connection to the
carina. All voxels exceeding a ratio of 1.4 between distance
to the segmentation boundary and their connectivity to the
carina are considered as leaks, and a dilation of these voxels
is removed from the segmentation mask. This is similar to
the leak detection stopping criteria used in many tree-oriented
wavefront propagation segmentation methods as e.g. [24].

B. Watershed-based lobe segmentation

The anatomical information of fissures, bronchi, and vessels
are combined into a cost image for a watershed-based lobe
segmentation. For the 3D marker-based watershed transfor-
mation two kinds of inputs are required: a cost image and
markers corresponding to the five lobes (see Figure 3). To
obtain these inputs for a chest CT scan in which the vessels,
fissures, and bronchi have been segmented the following steps
are performed: 1) the segmentations are combined into a cost
image, 2) markers for the watershed are computed, and 3) the
lobes are segmented using a 3D watershed transformation and
post processing is applied.

1) Cost image construction: An ideal cost image for the
watershed transformation used for lobe segmentation shows
local maxima at the lobar boundaries and low values within the
lobes. The cost image is constructed using four features. The
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first feature is derived from the segmentation of the vascular
tree. The rationale for using the vascular tree is that there
are usually few vessels near the lobar borders, therefore, a
Euclidean distance to the vessels is calculated for each voxel
in the lung. The normalized result is a feature image Vcost in
the range of [0, 255] that shows high values in the region of the
lobar boundaries, see Figure 3e for an example. The second
feature is derived from the segmentation of the bronchial
tree. Since the lobes are supplied by separate subtrees of the
bronchial tree there are no bronchi near the lobar borders.
As for the vessel-based feature, a Euclidean distance to the
bronchi is computed and normalized for each voxel in the
lungs, leading to a feature image Bcost in the range of [0, 255]
with high values near the lobar borders (Figure 3f). The third
feature is derived from the segmentation of the fissures. Since
the fissures are the physical boundaries between the lobes, on
locations where they are present they indicate the exact lobar
boundary and should be emphasized. To obtain the feature the
Euclidean distance from the fissures in a region of 2 cm around
the fissures is calculated. Thereby the fissures are emphasized
and gaps in the fissure segmentation can be bridged. The result
image v contains zeros at the detected fissures. Thus, to get
the feature image Fcost in the range of [0, 255] with high
values at the fissures, v is squared, inverted, and normalized:

Fcost = 255 ·

(
1−

(
v

vmax

)2
)
, (7)

where vmax is the maximum value of the image v.
The last feature is based on the observation that due to

the small σ (= 1mm) of the fissure enhancement filter patho-
logical thick fissures are not always detected by the fissure
segmentation. In high-resolution chest CT scans the fissures,
and especially pathological thick fissures, show higher density
than the surrounding lung parenchyma. Thus the fourth feature
Ocost is the original CT scan vorig , normalized and clamped to
the range [0, 255] (see Figure 3a). The vasculature is masked
out since vessels usually show even higher density than thick
fissures:

Ocost =

{
max(0,min(255,

vorig+1024
4 )) /∈ V

0 otherwise.
(8)

In order to obtain the final cost image, the four features are
combined with equal weight (see Figure 3).

Cost =
Vcost +Bcost + Fcost +Ocost

4
. (9)

By combining the four input features false positive responses
of individual features are reduced since those areas that have
a high value in all individual cost images are enhanced.

2) Markers for the watershed segmentation: Markers
should ideally be created equally distributed throughout the
lobes to get a good coverage of the lobe areas. To generate
the markers, the different subtrees belonging to the lobes and
lobar segments are identified in the airway tree. This is done
by searching for major bifurcations separating large subtrees
in appropriate orientations (see Figure 7a). In the first step
a directed graph is modeled from the bronchi tree with the
trachea as root [25]. The center of gravity and volume of the

segmented voxels are calculated for each subtree. Then, for
each pair of sibling subtrees the following separation score is
calculated:

(−→n ·
−→
d )

2
·min(w1, w2), (10)

where −→n is the offset between the two subtrees centers of
gravity.

−→
d is the particular separation direction for the lungs,

lobes, and segments, that describes the typical topology of
the lungs. Thus, it is the expected direction between the two
lungs, two particular lobes, or two particular segments that
is determined beforehand on a set of pilot data. w1, w2 are
the volumes of the two subtrees and min(w1, w2) gives the
volume of the smaller subtree and discriminates large subtrees
against small subtrees. The two subtrees with the maximum
separation score are separated into different branches. In this
way first the bronchial tree is divided and labeled into left and
right lung and then these subtrees are further divided into the
lobes and segments.

The labeled airway tree can now be used to determine
marker positions for the watershed. However, since the seg-
mentation of the airway tree does not reach the periphery
of the lungs and the length of the airways detected is not
consistent between scans, the segmentation of the airways is
not directly usable to determine marker positions. To overcome
this problem, areas in the lung mask to place watershed
markers are identified based on the labeled airway tree as
follows. For each lobe the center of gravity of all terminal
branch positions is calculated. A plane is created that runs
through the center of gravity, with the normal vector of the
plane pointing to the root of the subtree. The connection lines
from each terminal branch position to the root position are
intersected with this plane and a principal component analysis
is performed for the intersection points. An ellipse is created
from the two principal components. Based on this ellipse and
the root of the subtree a cone is defined for each pulmonary
lobe (see Figure 7b). To compensate for varying segmentation
depths between the lobes, the cones are extended from the
plane to the lung boundary with half their original aperture.
In cases where cones from different lobes overlap, the overlap
areas are removed from both cones.

The superior segment of the right lower lobe is handled
with a separate cone because it cannot always be represented
by a single lower lobe cone appropriately. Figure 7 shows
an example of the labeled bronchi and resulting cones. All
bronchi and vessels inside the cones are assigned to the
corresponding cone label. In the next step the labeled vessels
and the bronchi are automatically converted into 3D markers
for the watershed segmentation. To delimitate the numbers of
markers the image resolution is temporarily set to 4.5 mm x
4.5 mm x 4.5 mm which results in 3000-4000 markers for
each lung.

3) Lobe segmentation and post processing: To obtain a lobe
segmentation from the cost image Cost and the markers, the
3D watershed transformation proposed by [26] is performed.
Downsampling of the cost image to a resolution of 1.5 mm
x 1.5 mm x 1.5 mm is applied to reduce calculation time.
The applied watershed algorithm separates regions with local
maxima in between and can be used with an arbitrary number
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of markers.
The borders between the obtained lobes after the watershed

segmentation are not always smooth due to local variations
in the cost image. Two majority filters with different kernel
sizes (3x3x3 and 5x5x1) are applied in a row to smooth the
boundaries. The label value that occurs most often under the
kernel is set to the voxel. To obtain the lobe segmentation on
the original resolution, the segmentation results are upsampled
using nearest neighbor interpolation.

III. DATA

Two datasets were used for evaluation. Dataset 1 allows
direct comparison to [11], Dataset 2 is publically available.

A. Dataset 1

Dataset 1 contains 20 normal dose (120 kV, 100-150 mAs)
inspiration CT chest scans that were used in [11] to evaluate
the lung lobe segmentation method. The scans are of 20
different patients from the University Medical Center Utrecht,
The Netherlands. The inplane resolution is between 0.54 mm
and 0.71 mm whereas the slice thickness is between 0.7 mm
and 1.0 mm. A human observer manually indicated the lobar
fissures to allow quantitative evaluation. The observer was
instructed to indicate the visible fissure on every fourth coronal
slice. For details we refer to [11].

B. Dataset 2

Dataset 2 was taken from the lung and lung lobe segmen-
tation challenge LOLA11 [3]. There are 55 CT scans from a
variety of clinically common scanners and protocols including
many cases with severe pathologies. The inplane resolution is
between 0.53 mm and 0.78 mm whereas the slice thickness is
between 0.3 mm and 1.5 mm.

The organizers of LOLA11 have available a manual seg-
mentation of the lung lobes on 9 coronal slices for each case
by two human observers. Both observers were instructed not to
draw a lobar border when they felt it was not possible. This led
to two scans for the left major fissure where no lobar border
was defined (cases 21 and 45), one for the right major fissure
(case 44), and five for the right minor fissure (cases 21, 44,
45, 48, and 55). For one scan, case 52, observers disagreed
about which fissure was the right minor fissure, leading to
a mean distance of 85.11 mm. The reference segmentations
can not be downloaded, but the LOLA11 challenge is still
open. Participants can upload segmentation results to receive
evaluation results.

Since lobar segmentation is most challenging in cases with
incomplete fissures we analyzed the segmentation results with
respect to the fissure completeness. For all cases of dataset 2
we quantified the fissure completeness for the left major, right
major, and left minor fissure with the method presented in van
Rikxoort et al. [27]. The fissure completeness is described as
a value in the range from 0 to 1.

IV. EXPERIMENTS & RESULTS

The presented method is implemented in the software de-
velopment environment MeVisLab [28][29].

TABLE I: Results of Experiment 1. The average mean and
maximum distance from the manually drawn fissure to the
automatically found lobe border are calculated for dataset 1.
For comparison the results of the methods by van Rikxoort et
al. [11] and Kuhnigk et al. [12] are shown.

Average ± std of Average ± std of
Fissure case mean (mm) case max (mm)

left major 0.69 ± 0.89 11.26 ± 5.98
left major (Rikxoort [11]) 0.48 ± 0.15 10.30 ± 3.52
left major (Kuhnigk [12]) 3.22 ± 3.60 24.77 ± 18.88

right major 0.67 ± 0.58 12.40 ± 4.12
right major (Rikxoort [11]) 1.23 ± 0.24 9.96 ± 2.89
right major (Kuhnigk [12]) 2.06 ± 1.45 17.65 ± 7.24

right minor 1.21 ± 1.52 11.63 ± 12.53
right minor (Rikxoort [11]) 1.28 ± 0.53 9.59 ± 7.38
right major (Kuhnigk [12]) 3.08 ± 1.14 15.21 ± 5.93

overall 0.86 ± 1.00 11.76 ± 7.54
overall (Rikxoort [11]) 1.00 ± 0.31 9.95 ± 4.60
overall (Kuhnigk [12]) 2.78 ± 2.06 19.21 ± 10.68

A. Experiment 1

The presented lung lobe segmentation approach was applied
to dataset 1. The mean and maximum distance from the
manually drawn reference were calculated for each lobar
border in 3D by computing the distance between each voxel
in the reference standard and the closest voxel in the lobar
segmentation. Table I shows the results of Experiment 1 with a
direct comparison to the results of a recently published method
by van Rikxoort et al. [11] and the preliminary approach of
the here presented method presented by Kuhnigk et al. [12].
Furthermore, Figure 8 shows screenshots of 6 cases with the
overlayed lobe segmentation result. It can be seen from Table I
that the proposed method performs well on dataset 1, with
better performance than the method by Kuhnigk et al. and
van Rikxoort et al. overall.

B. Experiment 2

In Experiment 2 we applied the presented lung lobe seg-
mentation method to dataset 2 and submitted the resulting
segmentations to the LOLA11 challenge [3]. The evaluation
metric of LOLA11 is the volume overlap to the manual
reference segmentation of one observer. In addition, a total
score is calculated from the average overlap of the five lobes.
Currently, the presented method has the highest score (0.88)
in the LOLA11 challenge (see [30]). Van Rikxoort et al. also
submitted the method presented in [11] to LOLA11 and got a
score of 0.85. Table II shows the overlap results for dataset 2.

For cases with a poor lung segmentation, the volumetric
overlap can be low even if the detection of the lobar border is
completely correct. Therefore, the same measurements as in
Experiment 1 were computed solely around the fissures. Since
at locations where there is no fissure the lobar boundary is
not exactly defined, in the LOLA11 challenge a slack border
of 2 mm was taken into account for evaluation. This means
that every voxel within 2 mm of the manually drawn lobar
border is assumed to have a distance of 0. Table III shows
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 8: Coronal screenshots of 6 cases of Experiment 1. The upper row shows the segmentation results (red = upper lobes,
blue = middle lobe, green = lower lobes) and the lower row shows the reference segmentation (yellow).

TABLE II: Volumetric overlap results of Experiment 2. The
mean, standard deviation (SD), minimum (min), maximum
(max), and median overlap to a manual reference segmentation
are computed for dataset 2. LUL = left upper lobe, LLL = left
lower lobe, RUL = right upper lobe, RML = right middle lobe,
RLL = right lower lobe.

Lobe mean SD min max median

LUL 0.92 0.16 0.20 1 0.98
LLL 0.89 0.23 0 1 0.96
RUL 0.92 0.09 0.60 1 0.96
RML 0.77 0.30 0 0.99 0.89
RLL 0.91 0.18 0 1 0.97

LOLA score 0.88

the average distance for all cases of dataset 2. Since outliers
have a strong effect on the average distance, Table III also
shows the median distances to the lobar borders. In addition,
21 coronal screenshots of segmentation results are depicted in
Figure 9 and 3D renderings of the same datasets are depicted
in Figure 10. Axial and sagittal screenshots of four cases are
shown in Figure 11.

C. Experiment 3

Figure 12a shows the relation between fissure completeness
and mean distance to the reference for all three fissures of the
55 cases from the LOLA11 dataset. Since incomplete fissures
can lead to locally inaccurate lobar border segmentation the
relation between the fissure completeness and the maximum
distance to the reference is plotted in Figure 12b. It can be
seen in Figure 12 that there is no clear relation between
fissure completeness and the performance of the method. For
both results the same slack border of 2 mm as described in
Experiment 2 was used. We can conclude that the performance
of the method is not substantially compromised by fissural
incompleteness.

V. DISCUSSION AND CONCLUSION

This paper presented a lobe segmentation method that
combines information from automatic segmentations of the
lungs, fissures, vessels, and bronchi to segment the lobes.
The approach is anatomically inspired and similar to the way
humans determine the lobar boundary. Visible fissures are used
for segmentation because they are the most precise feature, but
in absence of a fissure, the vessels and airways become more
important. Vessels are distributed all over the lung and due to
the high contrast to the lung parenchyma a good segmentation
of the vessels is feasible. But in some cases vessels cross
the lobar boundaries. Thus, the assumption that there are no
vessels at the lobar boundary is not always correct. In contrast
a deep segmentation of the bronchi is challenging but there are
definitely no bronchi at the boundary between the lobes. By
combining the information of different anatomical structures
we expect to get as much as possible information to perform
an accurate lobe segmentation.

Automated segmentation of anatomical structures is chal-
lenging in cases with abnormalities. By combining information
from several structures the method becomes more robust
against a failed segmentation of one of these structures. Most
previously published methods heavily rely on the detection
of the fissures, which is less reliable, especially in cases
with abnormalities such as shown in Figure 9o - 9u. Another
method reported in literature [11] that combines information
from different structures (the lungs, fissures, and bronchi) uses
an atlas-based approach. A disadvantage of that method is
that it can only produce lobar shapes close to the shapes
represented in the atlases, which leads to failures in cases
where pathological processes had altered the lobe shapes. The
method presented in this paper can generate any lobar shape
based on the input segmentations.

The presented approach was evaluated on 75 scans in total
with varying degrees of pathologies and fissure completeness.
The results show that the method performs well in almost
all cases and is robust against incomplete fissures. Several
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TABLE III: Distance measurement results of Experiment 2. The average as well as the median of the mean and maximum
distance from the manually drawn lobar borders for all cases of dataset 2 are shown.

average of average of median of median of
Fissure case mean (mm) case max (mm) case mean (mm) case max (mm)

left major 0.98 ± 1.45 16.60 ± 21.33 0.47 9.95
right major 3.97 ± 21.86 15.86 ± 25.88 0.48 9.73
right minor 3.09 ± 20.83 6.90 ± 23.43 0.06 3.00

overall 2.68 ± 14.71 13.12 ± 23.55 0.34 7.56

(a) case 8 (b) case 19 (c) case 22 (d) case 25 (e) case 28 (f) case 47 (g) case 49

(h) case 6 (i) case 15 (j) case 16 (k) case 23 (l) case 24 (m) case 31 (n) case 33

(o) case 35 (p) case 37 (q) case 42 (r) case 44 (s) case 45 (t) case 48 (u) case 50

Fig. 9: Coronal screenshots of 21 segmentation results of Experiment 2 (red = upper lobes, blue = middle lobe, green = lower
lobes). The first row shows relatively easy cases with normal anatomy and no more than mild pathologies. The second and
third row show more challenging cases with abnormal anatomy or severe pulmonary diseases.

approaches for automatic lung lobe segmentation have been
published, as presented in Section I. Comparison of the per-
formance of different approaches was difficult so far since the
approaches were evaluated on different datasets and regarded
different validation criteria. In this paper we compared the here
presented lung lobe segmentation method to two other recently
published approaches [11] [12] and performed an evaluation
on publically available data.

In Experiment 1 the presented method is compared to the
methods presented in [11] and [12] on 20 cases with mild
pathologies. The results show that our segmentation method
performed well for 20 cases with mild pathologies. The results
are comparable to the results of the method by van Rikxoort
et al. [11]. Our method shows slightly superior results for
the right major fissure and slightly inferior results for the
left major fissure. The results for the right minor fissure
are very comparable. The performance of our method is
superior to the results of the method presented in [12], with
an average distance to the fissure of 0.86 mm compared to

2.78 mm. The method in [12] can be seen as the preliminary
approach of the here presented method. It also employs a
watershed transformation but incorporates only information
of the vessels for the calculation of the cost image. Thus,
adding the information from fissures and bronchi improved
the segmentation result.

Experiment 2 presents an evaluation on publically available
data provided by the lung and lung lobe segmentation chal-
lenge LOLA11 [3]. In contrast to the cases of Experiment 1,
these 55 CT scans include cases with severe pathologies. All
of the papers in literature evaluated lung lobe segmentation
methods on data with mild pathologies. This is the first paper
with an evaluation of severely abnormal data (see Figure 9).
Currently only two groups participated in LOLA11 but the
contest is still open. Experiment 2 shows that the perfor-
mance of the here presented lobe segmentation method with
a LOLA11 score of 0.88 is slightly better than the one by
Rikxoort et al. with a LOLA11 score of 0.85.

Table 3 provides the mean distances to the lobar borders for
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(a) case 8 (b) case 19 (c) case 22 (d) case 25 (e) case 28 (f) case 47 (g) case 49

(h) case 6 (i) case 15 (j) case 16 (k) case 23 (l) case 24 (m) case 31 (n) case 33

(o) case 35 (p) case 37 (q) case 42 (r) case 44 (s) case 45 (t) case 48 (u) case 50

Fig. 10: 3D screenshots of 21 segmentation results of Experiment 2 (red = upper lobes, blue = middle lobe, green = lower
lobes). The first row shows relatively easy cases with normal anatomy and no more than mild pathologies. The second and
third row show more challenging cases with abnormal anatomy or severe pulmonary diseases.

the LOLA11 dataset. The values are on average higher than
in Experiment 1. This has two causes. First, in Experiment 1
only visible fissures were taken into account for the reference
standard while in Experiment 2 the lobar borders were defined
also on locations of incomplete fissures. Second, dataset 2
contains more cases with severe pathologies.

Table III shows high standard deviation values for the
mean distance of the right major and right minor fissure.
Furthermore, the median values are substantially lower than
the mean values (see Table III). The reason for the high mean
values and the high standard deviation is that the segmentation
of the right lobes for case 2 of LOLA11 completely failed
because an artifact stopped the bronchi segmentation in the
mediastinum (see Figure 13). In consequence no watershed
markers at all could be calculated and the lobe segmentation
stopped. In spite of the absence of resulting lobar boundaries,
the distance was calculated and resulted in 152 mm for the
right major fissure and 161 mm for the right minor fissure
with a strong effect on the mean values of Table III. Excluding
case 2, the average mean distance in Table III would improve
to 1.00 mm ± 1.70 mm (before: 3.97 mm ± 21.86 mm) for
the right major fissure and to 0.23 mm ± 0.41 mm (before
3.09 mm ± 20.83 mm) for the right minor fissure. It can be
seen in Figure 13 that for case 2 of LOLA11 the segmentation
of the lobes in the left lung was also unsatisfactory due to
inadequate bronchi segmentation and labeling. However, since
at least some bronchi markers are placed, a lobar segmentation
was produced leading to lower distances then at the right lung.

The here presented approach took on average 10 minutes

for one case of this experiment on a single core of a 2 years
old standard PC. The largest amount of time is needed by the
fissure segmentation algorithm. A downsampling was applied
in several steps to reduce computation time which might have
minor effects on the segmentation quality. The approach is
not yet optimized for speed and for future work the processes
can be parallelized. After optimization the approach could be
applied on full resolution. The approach of van Rikxoort et al.
took 110 minutes on average for one case of this experiment.

Several publications focus on datasets with incomplete
fissures [11] [16] [14] because the completeness of fissures
can impede the quality of lung lobe segmentation. There-
fore, in Experiment 3 we analyzed the relation between
fissure completeness and the segmentation quality. Figures 12a
and 12b show that the fissure completeness does not obviously
impact the distance from the calculated lobar boundary to the
reference segmentation. To pick two example data, case 24
(see Figure 9l) has a fissure completeness of only 0.21 for
the right minor fissure but the calculated mean distance to the
reference segmentation is also low with 0.13 mm. An example
with a high fissure completeness of 0.87 for the right major
fissure and a poor segmentation result of a mean distance of
161.17 mm is case 2. The bronchial segmentation for this
case failed because of the presence of a strong artifact in the
scan and no lobes were calculated at all (see Figure 13). In
general, Experiment 3 shows that the here presented lung lobe
segmentation approach is robust against incomplete fissures.

Results of Experiment 2 show a strong dependency to the
segmentation quality of the bronchi. Thus, for future work
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(a) case 8 (b) case 8 (c) case 8

(d) case 6 (e) case 6 (f) case 6

(g) case 35 (h) case 35 (i) case 35

(j) case 48 (k) case 48 (l) case 48

Fig. 11: Axial (a, d, g, j) and sagittal screenshots of the left (b,
e, h, k) and right (c, f, i, l) lung for four cases of Experiment
2. Red = upper lobes, blue = middle lobe, green = lower lobes.

we will focus on minimizing the dependency to the bronchi
segmentation quality. In the current version no watershed-
based lobe segmentation can be performed in case of a
failed bronchi segmentation because the required lobe markers
are generated from the labeled bronchi tree. One idea is to
heuristically set lobe markers based on their position in the
lung in case of a failed bronchi segmentation. An alternative
would be to apply a coarse registration with a labeled lung to
obtain the lobe markers.

Furthermore, pathological thick fissures are sometimes not
detected as fissures but as vessels. Thus, for these cases the
lobe segmentation does not exactly follow the lobar fissures
(see Figures 9t and 9u). The weight of the fissures in the cost
image is equal to the weights of the other inputs. Such a low
weight allows a high degree of independence against missing

(a) Mean distance to the reference.

(b) Maximum distance to the reference.

Fig. 12: Relation between fissure completeness and the dis-
tance to the reference segmentation. Both plots are cropped to
optimally illustrate the majority of the data. Thus, 2 outliers in
a) (at distance 152/0.79 and 161/0.87) and 5 outliers in b) (at
distances 54/0.66, 85/0.64, 130/0.96, 172/0.79, and 191/0.87)
are not depicted.

fissures compared to a higher weight which can increase the
accuracy of the segmentation. For future work we want to set
the weight of the inputs of the cost image dynamically based
on a confidence estimation of the vessel, bronchi, and fissure
segmentation.

Moreover, our experiments and the results of other pub-
lished lobe segmentation approaches (see Section I) show that
due the the variation of lung anatomy and pulmonary diseases
no automatic segmentation method can ensure a satisfying lobe
segmentation result for all cases. Thus, another key point for
future work is to implement an interactive method that allows
fast and intuitive correction of a given segmentation result.

In conclusion, we have presented a fast automatic lobar
segmentation method and shown in an extensive series of
experiments with 75 CT scans that the method performs well
and is robust against missing fissures.
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(b) Axial slice with artifacts.
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