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Abstract. We present a fully automatic method for lung segmentation
in Computed Tomography (CT). The method consists in a set of se-
quentially trained classifiers, each of them fed with information on both
pixel appearance and multi-scale analysis of neighbors class likelihood.
This approach implicitly embeds contextual information and efficiently
encodes long distance interactions. Furthermore, the iteration of classifi-
cation stages demonstrates to improve the system accuracy. The method
is applied to lung segmentation on the public dataset of 55 CT scans pre-
sented in the LOLA2011 challenge1, obtaining an overall score of 0.949.
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1 Introduction

Segmentation of lungs in X-ray Computed Tomography (CT) is an important
prerequisite for pulmonary image analysis. It allows the detection and quantifi-
cation of lung diseases as well as the registration of CT scans.

Segmentation of normal healthy lungs is a rather simple task, due to the
low density of lungs in comparison with the surrounding tissues. The presence
of severe disease makes the segmentation challenging, although of high clinical
interest. As an example, the presence of abnormalities such as tumors, inflam-
mation, or atelectasis, makes the lung to appear as a set of fragmented regions,
heterogeneous in density; in some cases, one of the two lungs may not be visible,
due to presence of fluid inside the lung. Furthermore, the boundary between the
left and right lung is not always clearly visible.

In 2011, a challenge on LObes and Lung Analysis (LOLA2011) was organized,
where eight groups participated. Most of the presented methods are based on
a canonical approach, consisting in alternating several thresholding and region
growing steps, based on a set of parameters, often ad-hoc. Variations of canonical
methods are presented in [1–6]. In [1], a multi-atlas approach is used in case an
erroneous segmentation is detected with the canonical method; in [4] a Cognition
Network Language is used as base framework, while the algorithm uses canonical
1 http://www.lola11.com
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approach, where information on context, density, geometry and shape is used as
well. Such approaches are valid in many of the cases. In [1], authors state that
conventional method follows the lung border more precisely than the proposed
multi atlas method and the manual tracing when no abnormalities are present.
As a matter of fact, the 14 years old method in [2], achieves one of the most
accurate result on the LOLA dataset. An approach based on active shape model
is proposed in [7], where the model is initialized by detecting ribs, then a robust
active shape model is first matched to the data; thereafter, the segmentation
is refined using an optimal surface finding algorithm where the search profiles
are determined by gradient vector flow. Given the use of a learned model, this
approach fails if the lungs shape significantly differs from those of the training set.
In [8], a Random Forest classifier is trained in a supervised manner with features
related to both lung appearance and context. The method uses the combination
of the trees outputs to generate pixel-wise class posterior, and embeds long range
visual features by considering the posterior of pixels at a random distance and
position with respect to the considered pixel. In order to achieve an accurate
lung segmentation, the system is first trained using four classes and then a final
label relaxation is applied. This approach is fast and accurate, although it fails
in presence of small diameter display field of view images, probably due to the
random definition of locations in long range features.

Our contribution. In this paper we present a fully automatic framework for
lung segmentation in CT scans. The method consists in an iterative pixel-wise
labeling of CT slices, where each stage consists is multi-class classifier. Each clas-
sifier is fed with features related to both pixel appearance and context, through a
multi-scale analysis of the posterior probabilities of neighbors. In this sense, our
approach has some common point with the works presented in [8, 9], although
with some important differences. First, differently from [8] our approach is in-
dependent on the discriminant classifier used in the framework, where random
forest may be an option, but not mandatory. Secondly, differently from [9], con-
textual information is defined through a rigorous multi-scale approach, which
encodes tissue relationships at controlled distances. Each stage of the system is
designed following the Stacked Sequential Learning (SSL) principle [10]. We im-
plement the architecture based on [11–13], but we join in a unique framework the
multi-scale, iterative and multi-class capabilities: to the best of our knowledge,
this is the first time such approach is formulated. We refer to the method as
Multi-scale iterative Multi-Class Stacked Sequential Learning (MiM-SSL). The
method is tested on a dataset of 55 CT scans of the LOLA2011 lung segmenta-
tion challenge. A MATLAB implementation of the code is available upon request
to the authors.

2 Method

The method consists of a multi-class classification framework, where a set of
stacked classifiers is used. Both appearance and contextual features are used as
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Fig. 1: Schematic representation of the main steps of the framework. NF features
are extracted (b) from the CT slice (a). The pixel-wise probability of each pixel
to belong to each class is computed (c), and used as input for the multi-scale
analysis (d). Appearance and contextual features are joined (e) to feed the next
classification stage. The classes reduction stage (f) is applied only at the first
iteration. Additional iterations can be considered in (g).

pixel-wise tissue descriptors. For classes definition, we consider five regions ob-
tained by manual annotation: left lung, right lung, air filled spaces inside the
body but outside the lung, body outside the lung field, airspace outside the body.
Since the method is formulated on independent cross-sectional (horizontal) cuts
of the CT scan, in the rest of the paper we refer to axial slice and to pixel as
the on-slice component of the voxel.

Multi-class Iterated Multi-scale Stacked Sequential Learning. The pro-
posed lung segmentation method is based on a multi-class iterated extension of
the Multi-scale Stacked Sequential Learning (MS-SSL) [11, 12]. The MS-SSL has
been proven to be a powerful method for medical image classification [13] and
has been iterated in a cascade-like structures for a specific segmentation problem
[12].

Here we provide a brief description of the method. Let us define I(x, y) ∈ <
(in Hounsfield units) as a slice in the CT scan, with spatial coordinates q =
(x, y) ∈ Ω = [1, 2, . . . , Sx]×[1, 2, . . . , Sy]. When omitting the spatial coordinates,
we refer to all the pixels, so that the notation I means the whole image pixels
in Ω.

Let us assume that we have a functional F that maps the input image I
in order to extract appearance features, F : I 7→ F ∈ <NF , where NF is the
number of features; F shares the same spatial support Ω of I.

Let us also assume that we have a function P that maps features to label
field probabilities, P : F (x, y) 7→ P (x, y) ∈ [0 1]NC , where NC is the number
of classes to discriminate. This functional can be implemented by means of a
classifier or an ensemble of classifiers. During inference, the estimated label field
Y can be computed as the maximum a-posteriori probability over P .

Finally, let us define a functional C, which extracts contextual information
from P , producing a description of spatial distribution and relation between class
probabilities: C : P 7→ E ∈ <NE .

The blocks F , P and C can be combined to form the inference pipeline of
an iterated Stacked Sequential Learning schema (see Fig.1). In Table 1, the
training and inference algorithms of the Multi-class Iterated Multi-scale Stacked
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TRAINING INFERENCE

Require: Itrain, Ytrain, Nit, F , C
Ensure: {P(1),P(2), . . . ,P(it)}
1: F = F(Itrain)

2: E(1) = ∅;
3: for it = 1:Nit do
4: U(it) = [F E(it)]

5: U(it)
∗ = subsampling(U(it))

6: LEARN P(it)|
{U(it)
∗ ,Y }

7: if it < Nit then
8: P (it) = P(it)(U(it))

9: E(it+1) = C(P (it))
10: end if
11: end for

Require: {P(1),P(2), . . . ,P(it)}, I, Nit, F , C
Ensure: Y
1: F = F(I)
2: E(1) = ∅;
3: for it = 1:Nit do
4: U (it) = [F E(it)]
5: P (it) = P(U (it))
6: if it < Nit then
7: E(it+1) = C(P (it))
8: end if
9: end for
10: Y = argc maxP (Nit)

Table 1: Training (left) and Inference (right) algorithm pseudocode.

Sequential Learning are detailed. It is worth to note that the main difference
between the two stages is the learning of functional P (line 6, training).

The inference procedure consists of the following iterative classification pro-
cedure: given a CT scan slice, the functional F extracts appearance features
(line 1); the functional P(1) estimates the posterior probabilities P (1) (line 5);
the functional C extracts the contextual information E(2) (line 7); this informa-
tion is joined to the appearance features (line 4); the resulting data U is then
fed to the next functional P(2). As shown in Fig. 1, these step (except for the
appearance feature extraction) can be iterated (gray square in the figure, lines
from 3 to 9). The final step (line 10) outputs the final labeling Y as the pixel-
wise most probable class in P (Nit). An additional stage of classes reduction is
depicted in Figure 1(f). This step is used just once in the framework, between
the first and the second iteration, with the aim of fusing the body and airspace
classes. This part is detailed next subsections, along with a detailed descriptions
on the implementation of F , P and C.

Appearance features extraction, F . The features of appearance used in
this study are based on [14], where three Gaussian kernels have been defined,
with standard deviations (λ1, λ2, λ3) = (0.43, 0.86, 1.3) mm. The Gradient Mag-
nitude and the Laplacian for every pixel in the slice are then computed at the
three scales and used as features, along with the eigenvalues of the Hessian ma-
trices. The pixel-wise HU value along with its smoothed value at the three scales
is considered as well. A feature vector F ∈ <16 is finally assigned to each pixel.

Probability estimation, P. To build the functional P, we deal with the multi-
class problem using the Error Correcting Output Codes (ECOC) [15] and com-
bining Support Vector Machine (SVM) with Intersection Kernel [16] as base
classifier. The ECOC matrix is filled with {-1,1} values when class samples are
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used as positive or negative samples, respectively, to train the corresponding
classifier; zero value is used if no samples of that class are used to train the
classifier. In order to classify a pixel with feature vector F , we test it with all
the trained SVMs, and we join the results into a codeword. We compute then
the distance dECOC between the codeword and each row of the ECOC matrix:
a small distance indicates a high likelihood with respect to the corresponding
class. The class pseudo-probability is estimated as p(c) ∝ exp−αdECOC(c), where
α = ln(NC)/

√
NC is used, assuring a codeword equidistant from all the rows is

also equiprobable with respect to all the classes.

Contextual feature extraction, C. In the MS-SSL scheme, the functional
C is implemented by using a multi-scale procedure: given a set of s spatial scales
Σ = {σ1, σ2, . . . , σs}, at each scale the label field probability P is filtered by a
Gaussian isotropic spatial kernel with corresponding standard deviation, form-
ing a set of filtered label field probabilities: Pσ = P ∗ G(0, σ). Given a spatial
position (xi, yi), and for each σ ∈ Σ, Pσ is sampled on a regular grid based on
a 8-neighborhood system plus the central pixel itself. The pixel displacement is
proportional to the filtering scale σ; thus the displacement set, for a 2-D spatial
support, can be defined as ∆ = σ · ([−1, 0, 1]× [−1, 0, 1]). This filtering and sam-
pling scheme provides an interesting property: contextual information at long
ranges is sampled from a properly smoothed version of the label probability
field, so that the sampling is not noisy and is representative of a certain region,
depending on the scale σ. Indeed, this sampling provides a good level of detail
at small filtering scales, close to the central sampling point, and almost noiseless
probability sampling at long range distances.

Gathering spatial contextual information in a reduced set of values, while
including long range interaction is not a trivial task; a detailed discussion on
the trade off between desired detail and long range coverage, with respect to the
number of pixel-wise contextual features NE can be found in [11]. The number
of contextual features can be easily computed as the product of the displacement
set cardinality by the number of spatial scales times the number of classes, i.e.
NE = |∆||Σ|NC . In this paper, we define the spatial scales in octave, so that
the set Σ can be defined as Σ = {1, 2, ..., 2i−1, 2s−1}. It is clear that the farthest
sampling is 2s−1 pixels away from the central pixel. Depending on the image size
Sx and Sy, a maximum value of s should be used, since sampling too far away
(outside the image spatial support) becomes totally useless.

It is worth to note that the number of scales may vary along the iterations.
In this way, the amount of contextual information at rough and fine image detail
can be adapted to problem-dependent image domain and properties. In order to
achieve a coarse-to-fine context description, reducing the risk of over fitting, we
compute the context at all the scales just at the first iteration, e.g., s|it=2 = 6,
while we consider only the smallest three scales in next iterations, e.g., s|it>2 = 3.

Classes reduction. As stated above, in our approach we define five regions
in CT scans: left lung, right lung, airways, body, air-space, with labels y =
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(1, . . . , 5), respectively. In order to properly encode contextual information, the
method requires the definition of all the regions in the slice. From the point of
view of the appearance, airspace and some lung regions may have similar lo-
cal appearance. This may cause problems of over fitting during training, due to
appearance features and when small scales are considered (e.g., some parts of
airspace may be classified inside the body). From the point of view of context
description, it is desirable that everything that is not lungs or airways is con-
sidered as a unique class during training. For this purpose, we implement the
following additional step with the aim of merging the body and airspace classes:
(1) the functional P(1) is trained with five classes; (2) from the output P (1) we
consider the region body as the set of pixels of the maximum a posteriori prob-
ability matrix with label y = 4; (3) we fill the body region with morphologic
operations [17], and we consider the positions qext /∈ body and qbody ∈ body ;
(4) we compute the position qmaxbody with maximum probability of class body in
P (1); (5) we update the pixels {qext} with features similar to body, for the sake
of subsequent training procedures: P (1)(y = 4)|qext

= P (1)(y = 4)|qmax
body

, and
F (1)|qext

= F (1)|qmax
body

.

3 Experiments

Fig. 2: Annotation.

Material. We use two different datasets, one for
training and validation, and one testing. For train-
ing and validation purposes, we use a dataset that
includes a large amount of challenging pathologi-
cal cases acquired with scanners of four different
vendors; from this dataset, we select two subsets
of 250 CT slices (TRds), and 150 CT slices (VAds)
from 40 patients. In each slice, the contour of left
lung, right lung, airways and body were manually
annotated (see Figure 2). The TRds dataset was
used to train MiM-SSL using 10000 samples per
class, randomly selected. For SVM inference we
make use of the fast approximation provided in
[16]. We avoid data intersection while training each stage of the iterations, to
avoid system over-fitting on the training data. For testing purposes, the public
LOLA dataset is used, consisting of 55 CT scans acquired from different pa-
tients with different scanners. In all the experiments, each image dimension was
rescaled by a factor 2 (256x256 px), to speed up the computation.

System setup. The contextual part of the proposed method has solely two
parameters: the number of initial scales s and the number of iterations Nit.
To optimize these two parameters we used the VAds dataset. The algorithm
performance has been evaluated by means of the Jaccard measure, averaged
between left and right lung, which is very sensitive to both false positive and
false negative errors. The surface in Figure 3(left) shows the Jaccard measure as
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Fig. 3: Jaccard measure performance on the VAds varying Nit and s (left). Jac-
card measure performance while adding semantic classes to the contextual fea-
tures (right).

a function of the two parameters. The optimal parameters results to be Nit = 5
and s = 6, providing and average Jaccard measure of 91.91%. The surface clearly
shows that increasing the number of scales s, which increases the maximum range
of labels interaction, increases the algorithm performance. However, as expected,
the performance with s ≥ 6 reaches a plateau where is not clear anymore if
increasing s, increases the performance; the contextual information available at
s = 6 is sufficient to understand the implicit semantic class spatial relationship.

As it can be noticed, the contribution of context is significant; the appearance
based classification (Nit = 1), provides a Jaccard of only 72.3%. With s = 6, the
increment from Nit = 2 to Nit = 5 is of 1.65%; this is a substantial improvement
since the Jaccard measure is very sensitive to errors, and the performance at
Nit = 2 is already pretty high.

Finally, it is interesting to note that adding semantic classes makes the classi-
fication problem easier instead of more difficult, as also commented in [8]. Figure
3(right) shows the Jaccard performance when no context is used, when Nc = 3
classes (left and right lung, and rest) are used, when the airways are added
(Nc = 4), and when the body class is also added (Nc = 5). The case Nc = 5
solely refers to the first iteration, since the technique of classes reduction is ap-
plied in this case. The progressive improvement is clearly visible; adding the body
class substantially increases the system performance. A one-way ANOVA test
at 5%, with multiple comparisons, ensures that the difference when adding the
context (Nc = 3) w.r.t. no context is statistically significant (p-value < 10−3),
but also that adding the class body (Nc = 5) is statistically significant w.r.t. all
previous configurations.
Test on LOLA dataset. Given the 55 scans of the LOLA 2011 challenge, we
compute the features F for each pixel of each slice, and classify it independently
from the rest of the scan. For this reason, no 3D information is exploited. The P
functional is designed as a one-vs-all ECOC matrix, where SVMs are combined.
Although the optimal number of iteration in system setup is Nit = 5, we experi-
mentally observed comparable results with Nit = 4. For the sake of computation
time, we performed our experiments with the latter configuration. As stated in



8

section 2, we use s = 6 for it = 2 (i.e., maximum distance interaction ≈ 10cm),
and then we decrease it to s = 3 for it > 2 (i.e., maximum distance interaction
≈ 1cm). This has the effect of providing a fully contextual description at the
initial stage, while concentrating on details in subsequent stages. Quantitative
results for segmentation scores are shown in Table 2, compared with other ap-
proaches. For the sake of completeness, the method that won the challenge is
also reported [18]. The proposed method (MiMSSL), achieves performance com-
parable with methods based on cognition-network [4], active-shape model [7],
and the Keuhkot approach [5]. In most of the cases, the minimal value for right
lung is 0.000, due to the scan 45, where the lung is not visible. The method in
[8], which is based on a similar idea of MiMSSL, achieves better performance,
but applies a final label refinement, which is not used in this paper.

Qualitative results on per-slice lung segmentation are depicted in Figure 4.
We can observe that: (1) unlike some shape-based models, our approach is able
to deal with a partially visible lung Fig. 4(m); (2) an accurate segmentation is
achieved even in presence of lungs with fragmented appearance or non standard
shape Fig. 4(g,i,l); (3) we achieve a good separation between lungs and external
airways Fig. 4(a,f,g,h); (4) even without constrains on connectivity or specific
rules, there is no confusion between air inside the lung and outside (e.g., trachea)
Fig. 4(n,f); (5) the method automatically separates the two lungs: in case their
separation is clearly visible, they are correctly separated, otherwise, the method
tends to separate them in the middle of the image Fig. 4(b,c,f). This is due
to the statistics of the position of the separation in the training set; (6) in
some cases, regions that appear separated from the main lung region are also
segmented as lung. Usually, these regions are located in the lower part of the
abdomen. Although this phenomenon is a drawback in some cases Fig. 4(d), it
may help in cases where the lung appears as separated into several regions, due
to the horizontal cut of the scan Fig. 4(e). This issue could be solved by taking
advantage of 3D information for classification in the future implementation of
the method. A complete overview of the results on the whole dataset is depicted
in Figure 5. In some cases (scan 7, 10, 27, 30, 34, 42, 51), areas outside the lungs
are labelled as lung. This problem is due to the effect of contextual features at
large scales, which in test set produce artifacts in areas where lung is expected
to be. These features are also responsible for weak precision at lung borders in
some cases.

MiMSSL [18] [4] [7] [5] [8]

score 0.949 0.973 0.949 0.949 0.948 0.952
mean 0.941/0.956 0.974/0.972 0.950/0.949 0.939/0.959 0.935/0.961 0.952/0.951
std 0.092/0.132 0.097/0.135 0.172/0.187 0.173/0.122 0.209/0.147 0.117/0.132
min 0.326/0.000 0.277/0.000 0.000/0.000 0.039/0.167 0.000/0.000 0.116/0.000
Q1 0.936/0.967 0.987/0.991 0.980/0.984 0.979/0.985 0.978/0.986 0.965/0.964
median 0.967/0.978 0.992/0.994 0.987/0.990 0.990/0.990 0.990/0.993 0.974/0.974
Q3 0.976/0.982 0.995/0.996 0.993/0.993 0.994/0.994 0.995/0.996 0.978/0.977
max 0.990/0.991 0.999/0.999 0.998/0.998 0.997/0.997 0.998/0.998 0.987/0.987

Table 2: Comparison on LOLA dataset results. The segmentation scores provided
by the challenge organizers are reported.
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(a) s11-f0181 (b) s06-f0101 (c) s13-f0261 (d) s07-f0201

(e) s17-f0401 (f) s16-f0081 (g) s05-f0201 (h) s15-f0181

(i) s25-f0241 (l) s35-f0061 (m) s45-f0131 (n) s23-f0101

Fig. 4: Examples of automatic lung segmentation with MiMSSL. The CT scan is
shown, along with the result, where in red and blue are represented the two lungs.
The scan number and slice number in the LOLA2011 dataset is also indicated
with the letters s and f , respectively.
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Fig. 5: Coronal slices of 55 LOLA2011 scans. The corresponding segmentation is
also indicated, in red the left lung, in blue the right lung.
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4 Discussion
The computational cost of the proposed algorithm depends on the number of
image pixels N , the number of scales s, the number of classes Nc and the number
of iterations Nit. Gaussian filtering is performed with the O(N) approximated
method in [19]. Contextual information extraction (C) is O(sNNc(Nit − 1)),
requiring a Gaussian convolution per scale per class per iteration (except for the
first one). Function P requires an SVM inference per class per iteration; since
we use the approximate SVM inference in [16] which is O(N), computing P is
O(NNcNit). For these reasons, our proposal scales linearly on every parameter.
Moreover, great part of the operations within one iterations can be parallelized,
e.g. filtering and SVM inference among classes. A MATLAB non-parallelized
version of the algorithm requires about 4.8 seconds per slice on a 2.8 GHz Intel
Core i7 processor and 8GB of RAM; the averaged computation time for all the
scans of LOLA dataset in a multi-core AMD Opteron 6272 at 2.1GHz with 64GB
of RAM is of 5 minutes per scan.

In terms of performance (see Figure 3), it has to be noted that without the
contextual features (Nit = 1), the system perform poorly since there is no clue
to discriminate between left and right lung. Adding a stage that uses contextual
information (Nit = 2) increases the performance in a significant way only if the
number of scales s is greater than 4. This is due to the fact that increasing
the number of scales allows to model long-range interaction between classes.
Increasing the number of iterations, increases the Jaccard measure; however,
there is a limitation in the improvement and thus further stages do not provide
significant improvement while increasing the computational time.

Finally, it is worth to note that in this work we used basic descriptors as
features. Since the method is based on classification, we expect using richer
texture descriptors (e.g. LBP) further improves the overall performance. This
task is out of scope for the current paper, where our aim is to demonstrate
the usefulness of the presented general approach in this specific segmentation
problem.

5 Conclusions and future work
We have presented a fully automatic method for lung segmentation in Computed
Tomography, which implicitly embeds contextual information and efficiently en-
codes long term interactions between pixels. The method has been applied to
the LOLA2011 lung segmentation dataset. A straightforward improvement in
the method is the use of 3D information along the whole scan, which could solve
the issue (6) in section 3. However, this requires a sufficient number of 3D ground
truth volumes. Furthermore, an analysis of feature importance in the sparse ma-
trix of contextual information is necessary, especially in 3D extension. The same
method can be applied to other segmentation problems in both CT and MRI,
such as liver, etc. Future works encompass the refinement of lung segmentation;
as an example, in cases where the lungs are in contact, the separation between
left and right lung is visible as a thin line of tissue and it is very difficult to
separate the lungs at the appropriate position by means of a learning approach.
In this cases, local refinement seems to be mandatory.



12

References

1. Rikxoort, E.M., de Hoop, B., Viergever, M.A., Prokop, M., van Ginneken, B.:
Automatic lung segmentation from thoracic computed tomography scans using a
hybrid approach with error detection. Medical Physics 36(7) (2009) 2934–2947

2. Brown, M., McNitt-Gray, M., Mankovich, N., Goldin, J., Hiller, J., Wilson, L.,
Aberle., D.: Method for segmenting chest ct image data using an anatomical
model: preliminary results. IEEE Trans Med Imaging 16(6) (1997) 828–839

3. Weinheimer, O., Achenbach, T., Heussel, C.P., Duber, C.: Automatic lung seg-
mentation in mdct images. Technical report, LOLA Challenge 2011 (2011)

4. Korn, R., Kim, J., Schmidt, G., Binnig, G.: Description of a fully automatic lung
segmentation algorithm based on the cognition network technology. Technical
report, LOLA Challenge 2011 (2011)

5. Pinho, R., Delmon, V., Vandemeulebroucke, J., Rit, S., Sarrut, D.: Keuhkot: A
method for lung segmentation. Technical report, LOLA Challenge 2011 (2011)

6. Kuhnigk, J.M., Dicken, V., andL. Bornemann, S.Z., Kuemmerlen, B., Krass, S.,
Peitgen, H.O., Yuval, S., Jend, H.H., Rau, W.S., Achenbach, T.: New tools for
computer assistance in thoracicct - part i: Functional analysis of lungs, lung lobes,
and bronchopulmonary segments. RadioGraphics 25(2) (2005) 525–536

7. Sun, S., Bauer, C., Beichel, R.: Robust active shape model based lung segmentation
in ct scans. In: LOLA Challenge 2011. (2011)

8. Montillo, A.: Context selective decision forests and their application to lung seg-
mentation in ct images. In: Workshop in Pulmonary Image Analysis. (2011)

9. Loog, M., van Ginneken, B.: Supervised segmentation by iterated contextual pixel
classification. In: In Proceedings 16th International Conference on Pattern Recog-
nition. (2002) 925–928

10. Cohen, W.W.: Stacked sequential learning. In: International Joint Conference on
Artificial Intelligence. (2005) 671–676

11. Gatta, C., Puertas, E., Pujol, O.: Multi-scale stacked sequential learning. Pattern
Recognition 44(10-11) (2011) 2414–2426

12. Seyedhosseini, M., Kumar, R., Jurrus, E., Giuly, R., Ellisman, M.H., Pfister, H.,
Tasdizen, T.: Detection of neuron membranes in electron microscopy images using
multi-scale context and radon-like features. In: MICCAI (1). (2011) 670–677

13. Ciompi, F., Pujol, O., Gatta, C., Alberti, M., Balocco, S., Carrillo, X., Mauri-Ferre,
J., Radeva, P.: Holimab: A holistic approach for media-adventitia border detection
in intravascular ultrasound. Medical Image Analysis 16(6) (2012) 1085–1100

14. Sluimer, I.C., Prokop, M., van Ginneken, I.H.B.: Automated classification of hy-
perlucency, fibrosis, ground glass, solid, and focal lesions in high-resolution ct of
the lung. Medical Physics 33(7) (2006) 2610–2620

15. Dietterich, T.G., Bakiri, G.: Solving Multiclass Learning Problems via Error-
Correcting Output Codes. JAIR 2 (1995) 263–286

16. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support
vector machines is efficient. In: CVPR. (2008) 1–8

17. Soille, P.: Morphological image analysis: Principles and applications. Springer-
Verlag (1999) 173–174

18. Lassen, B., Kuhnigk, J.M., Schmidt, M., Krass, S., Peitgen, H.O.: Lung and lung
lobe segmentation methods at fraunhofer mevis. In: LOLA 2011 Challenge. (2011)

19. Geusebroek, J.M., Smeulders, A.W.M., van de Weijer, J.: Fast anisotropic gauss
filtering. IEEE Transactions on Image Processing 12(8) (2003) 938–943


