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Abstract. We present a fully automated approach for segmentation
of lungs in CT datasets. The method was specifically designed to ro-
bustly segment lungs with cancer masses and consists of three process-
ing steps. First, a ribcage detection algorithm is utilized to initialize our
model-based segmentation method. Second, a robust active shape model
matching approach is applied to roughly segment the outline of the lungs.
Third, the outline of the matched model is further adapted to the im-
age data by means of an optimal surface finding approach. The method
was evaluated on the LOLA11 test set, consisting of 55 chest CT scans
with a variety of different lung diseases and scan protocols. Compared
to a reference standard, mean average and median volumetric overlap
scores of 0.949 and 0.990 were achieved, respectively. Several examples
demonstrate the ability of our method to successfully segment lungs with
cancer masses.

1 Introduction

Many automated lung image analysis methods require the segmentation of lungs
in an initial processing step. Segmentation of normal lungs imaged with CT is
a rather simple task, because of the large density difference between air-filled
lung tissue and surrounding tissues. A number of algorithms can be found that
deal with this topic (e.g., [1–5]). In case of diseased lungs (e.g., pneumonia,
fibrosis, cancer, etc.), lung segmentation becomes a non-trivial problem. Only a
few publications propose robust lung segmentation methods [6–10].

To address the limitations of existing methods in the context of segmentation
of lungs with cancer masses (robustness, processing speed, etc.), we have intro-
duced a new method [11] which is based on an active shape model (ASM) [12]
for lungs in combination with a robust model matching method. The statistical
lung model allows us to guide and constrain the segmentation process, and thus,
to successfully segment pathological lung tissue which can have similar density
to tissue adjacent to the lungs.

The lung segmentation approach utilized in this paper represents an extended
version of our work described in [11]. Our method was applied to a diverse test



data set of 55 lung scans, which was provided by the “LObe and Lung Analysis
2011” (LOLA11) challenge4. The lung segmentation results achieved with our
approach are reported and discussed in this paper.

2 Method

Fig. 1 provides an overview of our approach to lung segmentation, which was
designed to robustly segment lungs with cancer masses. The core of our method
consists of a robust ASM (RASM) segmentation approach followed by an optimal
surface finding (OSF) based segmentation step. Compared to our preliminary
work reported in [11], several extensions were incorporated into our algorithm.
Specifically, we have added an automated model initialization method, which
makes our approach fully automated. Also, the optimal surface finding step
was refined by incorporating knowledge about the location of trachea and main
bronchi in combination with a more flexible way of generating the basic graph
structure required by the OSF algorithm. The individual components of our
approach are described below.
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Fig. 1. Method overview. The segmentation of the right lung (RL) and left lung
(LL) are performed independently.

2.1 Robust ASM-Based Lung Segmentation

Based on 41 segmented total lung capacity (TLC) CT scans, point distribution
models (shape models) of right and left lung shapes were generated. For this
task a minimum description length (MDL) approach [13] as described in [11]
was utilized. The generated models are then used to segment the right and left

4 http://www.lola11.com



lung by means of a robust active shape model matching approach, which we have
introduced in [11]. The robust matching algorithm allows dealing with outliers
which can be induced by high density lung pathology (e.g., cancer) regions.
Note that a standard ASM matching approach would fail in such cases, since
it is a least squares optimization procedure. Essentially, the methods for model
generation and model-based segmentation are the same as described in [11].

2.2 Rib-Based Model Initialization

Before the above described model-based segmentation method can be applied,
initial shape and pose parameters need to be found. For this purpose, we uti-
lize the mean shape parameters and calculate location and isotropic scale pose
parameters based on a bounding box of the ribcage5. Therefore, we utilize an
automated method which detects ribs in the CT dataset:

1. To detect tubular structures that are comparable in size, density and scale
to rib structures, we truncate the gray-value range of the CT dataset to
a range of 0 to 500 HU and apply Frangi’s ”vesselness measure” [14] on
a scale of σ = 5 mm after downsampling of the dataset by a factor of
4. From the resulting response image, centerline-based representations are
extracted utilizing a height-ridge traversal procedure as presented in [15].
This procedure extracts the centerlines of ribs, but the result might also
include centerlines of similar structures such as (contrast) enhanced vessels
or the spine, for example.

2. In order to discard non-rib like structures, we make use of the observation
that the ribs exhibit a repeating pattern, while the other structures do not.
For each centerline a feature vector is derived based on geometric properties
and mean shift clustering [16] is performed to identify the ribs. We perform a
two stage clustering. The features used in the first stage are the eigenvalues
resulting from a PCA analysis of the centerline point positions. The resulting
clustering allows identification of structures with similar spatial extent as the
ribs, but it may still contain some longer blood vessels, for example. Thus,
the second clustering stage clusters centerlines based on their orientation,
because ribs lie within planes with similar orientation.

2.3 Optimal Surface Finding

Due to the limited size of the training data set utilized for model building, the
model might not be able to describe smaller local shape variations. To capture
this information, we utilize a constrained optimal surface finding method that is
based on the work of Li et al. [17]. The algorithm transforms the segmentation
problem into a graph optimization problem represented by a node-weighted di-
rected graph. Therefore, for each surface point of the initial prior surface (the
RASM mesh), a search profile is constructed describing possible positions of

5 Note that we assume that no rotation is required due to the utilized CT protocol.



the mesh vertices with related costs for the surface to pass through this point.
Each of these points is represented by a node in the graph with associated costs.
Infinite-cost edges between these nodes assure surface smoothness. Li et al. [17]
showed how to obtain a globally optimal solution to this segmentation problem
in low-order polynomial time using a maximum-flow algorithm [18].

In contrast to our work reported in [11], the search profiles are constructed
following vectors in a Gradient Vector Flow [19] field derived from the initial
prior surface as described in [20], which allows avoiding mesh folding problems.
The required search range (the length of the search profiles) and surface smooth-
ness constraints vary for different locations of the mesh. While in some areas a
small search range and restrictive smoothness constraints are preferable to avoid
segmentation errors, larger search areas or less restrictive smoothness constraints
are necessary in other areas of the prior surface. To address this issue, the search
profile length lv of a vertex v and the smoothness constraints ∆v1,v2 between
neighboring vertices are modeled statistically (mean and standard deviation)
based on learning data. The actually utilized search profile length lv of a vertex
is obtained as mean plus 2.6 times the standard deviation of these observations;
using a value of 2.6 allows including 99% of the found variation. The maximum
distance difference ∆v1,v2 between neighboring search profiles is obtained in the
same manner. To avoid inclusion of the trachea or the main bronchi in the seg-
mentation results, search profile construction is stopped before entering these
regions (see Section 2.4).

As cost function c(x) we use:

c(x) =

{

1.0 if −→n (x) · −→g (x) < 0
1.0− |−→g (x)|/gmax else

, (1)

where −→g (x) = ∇(Gσ ⋆ I)(x) is the image gradient at location x and gmax

the highest gradient magnitude in the image I. −→n (x) is the direction of the
search profile at this location and Gσ is a Gaussian filter kernel with variance
σ = 2 mm. The search profile points are obtained at discrete sampling positions
with a distance of 0.25 mm between them.

2.4 Trachea and Main Bronchi Segmentation

To avoid leakage of the lung segmentations into the trachea or the main bronchi,
we perform a segmentation of these areas and exclude them explicitly from the
search space in above described optimal surface finding. Therefore, a modified
system of the airway tree extraction method described in [21] is utilized. Because
we are only interested in large airways, we reduce the computation time by first
downsamping the CT dataset by a factor of 4, before multiscale tube detection
filtering is applied for tubular structures with radii 5, 7.5 and 10 mm. Instead
of reconstructing the whole airway tree, only the trachea and directly connected
tubular structures (the main bronchi) are identified. Accurate segmentations for
these structures are obtained by applying a constrained optimal surface finding
similar to the method described in the previous section (Section 2.3), but with
a fixed search profile length of ±1 cm and a smoothness parameter of ∆ = 5.



3 Results

We applied our method to the LOLA11 test set. For performance assessment, all
lung meshes generated with our approach were voxelized and sent to the LOLA11
organizers, which in return provided the volumetric segmentation overlap mea-
sures with respect to a ground truth6. In Table 1, the results for left and right
lungs are shown which consist of the mean, standard deviation, minimum, first
quartile, median, third quartile, and maximum overlap of the 55 test cases, as
well as an overall score. In this context, the overlap between two binary seg-
mentation volumes is defined as the volume of their intersection divided by the
volume of their union.

Table 1. Results of lung segmentation for the 55 scans on LOLA11.

mean SD min Q1 median Q3 max
left lung 0.939 0.173 0.0392 0.979 0.990 0.994 0.997
right lung 0.959 0.122 0.167 0.985 0.990 0.994 0.998
score 0.949

On average, about 6 minutes were required for fully automated segmentation
of right and left lungs in a CT scan.

4 Discussion

Left and right lung segmentations show the same median overlap value of 0.990
(Table 1), which is an indication that in the majority of results generated with
our approach closely match the gold standard produced by the organizers of
LOLA11. The examples depicted in Figs. 2, 3, and 4 confirm this—segmentations
of normal lungs and lungs with high-density pathology (e.g., lung cancer) show
only small errors.

As can be seen from Table 1, the mean overlap value for segmented left and
right lungs is below the median and first quartile (Q1). This indicates that our
approach failed in a few cases. This is also reflected by the minimum overlap
values shown in Table 1. Figs. 5 and 6 depict some examples of segmentation
errors. In cases where the lung shape widely deviates from the learned lung
shapes (Fig. 5)—e.g. collapsed or partly removed lungs—model-based segmen-
tation is challenging. For some CT scans (e.g., with pleural effusion), additional
post-processing steps might be needed to extract the actual lung tissue.

The lung imaged in Fig. 6(a) appears to be quite long. Since our model-based
approach is constrained to a certain degree by the learned lung shapes, it fails to
fully segment this case. Such a problem can be solved by expanding the learning
shape set. Fig. 6(b) depicts a case where the tips of the left and right lungs

6 Details regarding the validation procedure can be found at http://www.lola11.com



overlapped. This problem can be solved by utilizing a multiple surface graph
search approach as described in [17].

(a) (b)

Fig. 2. Examples of lung segmentations in CT images with (a) and without (b)
contrast agent.

5 Conclusion and Future Work

We have presented a fully automated method for the segmentation of volumetric
CT scans of lungs with high density pathology. Our approach is based on a
robust ASM matching method which is followed by a constrained optimal surface
finding step. The evaluation on the LOLA11 test set showed that the majority of
lung segmentations produced with our approach has a high volumetric overlap
with the gold standard. Larger segmentation errors occurred in cases with wide
deviations from the shapes in the utilized learning set. Future work will focus
on expanding the learning set utilized for model generation and on refining the
optimal surface finding step of our method.
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(a) (b)

(c) (d)

Fig. 3. Examples of lung segmentations. The axial images depict lungs with
different types of high density pathology.



(a) (b)

(c) (d)

Fig. 4. Examples of lung segmentations showing coronal views of lungs with
high density pathology.



(a) (b)

(c)

Fig. 5. Examples of lung shape variation in the LOLA11 test set. For each CT
scan, the corresponding segmentation results is depicted.



(a) (b)

Fig. 6. Examples of current limitations of our segmentation approach. See Sec-
tion 4 for details.
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