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Liver segmentation using 3D CNNs with high level
shape constraints

Man Tan, Xiongwei Mao, Fa Wu, and Dexing Kong∗

Abstract—Automatic liver segmentation from abdominal com-
puted tomography (CT) images is a fundamental task in
computer-assisted liver surgery programs. Recently, deep con-
volutional neural networks (CNNs) are served as the first choice
in many volumetric segmentation tasks. However, the most com-
monly used cross entropy loss treats each pixel independently and
equally, which makes the network sensitive to fuzzy boundaries
and heterogeneous pathologies. In this work, we propose an
automatic segmentation framework based on a 3D CNN with
a hybrid loss function. The hybrid loss function consists of three
parts. The first part is an adaptively weighted cross entropy loss,
which pays more attention on misclassified pixels. The second
part is an edge-preserved smoothness loss, which guarantees that
neighbouring pixels with the same label have similar outputs,
while neighbouring pixels with different labels have dissimilar
outputs. The third part of loss is a shape constraint used
to model high level structure differences. In our experiments,
data augmentation is performed both in the training stage
and the test stage. We extensively evaluated our method on
two datasets: the Segmentation of the Liver Competition 2007
(SLIVER07), and the Combined (CT-MR) Healthy Abdominal
Organ Segmentation (CHAOS) Challenge. The quantitative and
qualitative results demonstrate that our method is highly suited
for liver segmentation.

Index Terms—automatic liver segmentation, convolutional neu-
ral networks, hybrid loss, high level structure difference.

I. INTRODUCTION

ACCURATE liver segmentation on three dimensional (3D)
computed tomography (CT) is critical in many clinical

applications, such as treatment planning, and postoperative
assessment. However, the manual delineation on each slice
of liver is a laborious and huge time-consuming process. As
a result, manual segmentation is not suited for a busy clinical
practice in high volume settings [1]. In order to accelerate
and facilitate diagnosis, therapy planning and monitoring,
automatic liver segmentation is highly demanded [2].

Automatic liver segmentation from CT images is a very
challenging task due to the wide variety of liver shapes,
fuzzy boundaries, and the presence of various pathologies and
high-intensity intrahepatic veins. To tackle these difficulties,
extensive works have been proposed. Comprehensive surveys
on liver CT image segmentation methods and techniques were
presented by Campadelli et al. [3] and Mharib et al. [4].
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Heimann et al. [5] also presented a detailed comparison study
between different methods for liver segmentation based on
results from the ”MICCAI 2007 Grand Challenge” workshop.
Generally, all liver segmentation algorithms can be categorized
into three classes according to the image features they work on,
including gray level based methods, structure based methods
and texture based methods [6].

Gray level intensity is the most obvious feature of CT
images. Many gray level based segmentation algorithms are
developed, including region growing methods [7], [8], active
contours [9], [10], graph cuts [11], [12], clustering based
algorithms [13], [14] and so on. For example, Rusko et al. [15]
first determined a seed region based on intensity histogram and
separated the heart from the liver to eliminate over-segmented
regions. Finally, they employed an advanced region growing
method to segment the liver region followed by various
postprocessing steps to prevent under-segmentation. Lim et
al. [16] extracted the initial liver volume by exploiting prior
information about the location of liver and the distribution of
liver intensity from manually segmented CT samples. Next,
they utilized multiscale morphological filters with region-
labeling and clustering to detect the search range and generate
the initial liver contour. Finally, contour-based segmentation
using the labeling-based search algorithm was applied to find
the final liver contour. Massoptier et al. [17] used the mean
shift filter to remove the noise from homogenous areas while
keeping clear and sharp edges. And then, they applied a
graph cut based method initialized by an adaptive threshold to
segment the liver. Zhao et al. [14] employed a fuzzy C-means
clustering algorithm and morphological reconstruction filtering
to segment the initial liver CT image. Then, a neural network
was trained to classify the candidate regions. Although some
of the aforementioned approaches have achieved promising
performance, there are some drawbacks in gray level based
methods, such as: they need additional algorithms for initial
conditions (seed points, initial contours/regions), and may be
sensitive to initial conditions; they are challenging to prevent
over-segmentation caused by similar intensities between target
and background regions, and avoid under-segmentation caused
by inhomogeneous target regions.

The central hypothesis of structure based methods is that
structures of interested objects have a repetitive form of ge-
ometry. Generally, deformable models, statistical shape models
(SSMs), and probabilistic atlases built by a set of examples of
shape are employed to generate segmentations. Kainmuller et
al. [18] presented a fully automatic 3D segmentation method
for the liver based on a combination of a constrained free-form
and statistical deformable model. Erdt et al. [19] presented
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a fully automatic multi-tiered statistical shape model for
the liver that combined learned local shape constraints with
observed shape deviation during adaptation. Van et al. [20]
used a statistical classifier and two types of features, gray-
level features and location features obtained from a multi-atlas
registration procedure, to label pixels. Structure based methods
are more robust by capturing anatomical knowledge about the
shape, size, and position of liver. However, a major challenge
that these methods need to address is modeling the large shape
variations with limited training data.

In texture based segmentations, handcrafted features are
extracted first and trained classification models are then em-
ployed to label unseen images. Luo et al. [21] used wavelet
coefficients as texture descriptors and implemented support
vector machines (SVMs) to classify the data into pixel-wised
liver area or non-liver area. Finally, integrated morphological
operations were designed to remove noise and delineate the
liver. Ling et al. [22] presented a hierarchical framework to
efficiently and effectively monitor the accuracy propagation
in a coarse-to-fine fashion. And marginal space learning and
steerable features were applied for robust boundary inference.
Unfortunately, these methods heavily rely on handcrafted fea-
tures and do not take full advantage of 3D spatial information.

In recent years, with the remarkable success of deep convo-
lutional neural networks (CNNs) in nature image processing
[23], [24], [25], [26], [27], many studies have used the
representative features learned by CNNs to deal with the
segmentation of liver. Dou et al. [28] presented a novel 3D
deeply supervised fully convolutional network for automatic
liver segmentation. They further employed a fully connected
conditional random field (CRF) [29] to refine the segmentation
results. Finally, they achieved a volumetric overlap error
(VOE) of 5.42% and an average symmetric surface distance
(ASSD) of 0.79 mm on the SLIVER07 dataset [5]. Hu et al.
[30] proposed an automatic segmentation framework based on
a 3D CNN and globally optimized surface evolution. They
first used a trained deep 3D CNN to learn a subject-specific
probability map of liver that was acted as a shape prior. Then,
both global and local appearance information from the prior
segmentation were adaptively incorporated into a segmentation
model, which was globally optimized in a surface evolution
way. Finally, they achieved a mean Dice similarity coefficient
(DSC) of 97.25%, and an ASSD of 0.84 mm on the SLIVER07
dataset. Compared to previous methods, these methods are
superior as they can automatically produce a subject-specific
segmentation probability map without difficult handcrafted
features, complex registration or shape deformation. However,
these methods heavily rely on image intensities. Thus, the
probability maps still suffer from some limitations of gray
level based methods. To solve these shortcomings, these
methods all take further postprocessing steps to improve the
segmentation results. It’s worth noting that CNNs usually take
only a few seconds to generate the probability maps, while the
postprocessing process (e.g. graph cut [2], CRF [28], level set
[31]) often takes tens or even hundreds of seconds.

In this work, we propose a novel end-to-end system, called
shape-constrained densely connected segmentation network
(SC-SegNet). Compared with other existing algorithms, there

Fig. 1. Examples of contrast-enhanced CT images illustrating the challenges
for accurate liver segmentation. Each row shows the examples form the
CHAOS challenge, and the SLIVER07 challenge, respectively.

are three major novelties in the proposed framework:
• We use an adaptively weighted loss to pay more attention

to pixels that are difficult to classify, and design an edge-
preserved smoothness loss as a regularizer to constrain
neighbouring pixels with the same label to have similar
outputs while neighbouring pixels with different labels to
have dissimilar outputs.

• Our system also introduces a high-level loss for the
output of the middle layer of network, which is a shape
constraint that better guides the learned features for
segmentation.

• We validated the proposed method on two separate clin-
ical databases.

This paper is organized in the following manner. We start
by introducing the data used in our study in Section II and
explaining the details of our system in Section III. In Section
IV, we present the details of our experimental setup. And
in Section V, we report the results of a set of experiments
and compare our method with other related works. Further
discussion on some key issues is presented in Section VI.
Finally, the summary is given in Section VII.

II. MATERIALS

In our experiments, a total of 70 abdominal CT scans from
two datasets were used for model training (40) and testing
(30). The first dataset is from the CHAOS challenge [32].
There are five competition categories in this challenge, we only
consider the task of liver segmentation from CT images. This
dataset contains CT images of 40 different patients, who have
healthy liver. Among then, there are 20 clinical images with
reference segmentation and 20 test images without available
ground-truths. All images are acquired from upper abdomen
area at portal venous phase after contrast agent injection and
have the same axial dimensions of 512×512 with slice number
varying from 77 to 105. The pixel spacing varies from 0.7
to 0.8 mm in x-y direction, and slice distance varies from
3.0 to 3.2 mm. The second dataset is from the SLIVER07
challenge [5]. It includes 20 clinical images with reference
segmentation and 10 test images without available ground-
truths for participants. All images are acquired contrast-dye-
enhanced in the central venous phase and have the same axial
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dimensions of 512×512 with slice number varying from 64
to 502. The pixel spacing varies from 0.55 to 0.8 mm in x-
y direction, and slice distance varies from 1.0 to 3.0 mm.
Most images in the study are pathologic and include tumors,
metastasis and cysts of different sizes. Some examples of CT
scans are shown in Fig. 1.

III. METHODS

The framework of our method is presented in the Fig. 2.
Two networks are incorporated: a liver shape autoencoder and
a shape-constrained densely connected segmentation network
(SC-SegNet). We employ the cascaded learning strategy to
train the system. First, the liver shape autoencoder is trained to
obtain compressed codes of liver shapes. Then, the SC-SegNet
is trained under the supervision of both the segmentation
masks and the learned shape codes. In the next sections, we
describe the system in detail.

A. Liver Shape Autoencoder

In order to obtain compressed codes of liver shapes, many
methods can be used, such as SSMs and autoencoders. SSMs
are widely used to analyse shape variations. However, due to
the large variations of shape, the liver is a very challenging
structure to describe with SSMs [5]. As thus, we use an
autoencoder to model the liver shape.

The shape autoencoder is designed based on the structure of
DenseNet [27], which uses densely connected blocks (dense
blocks) to ensure maximum information flow between layers.
The dense block architecture is shown in Fig. 3. For each
layer in the block, the feature maps of all preceding layers
are used as input, and its own feature maps are used as input
for all subsequent layers. If the input of this block has k0

feature maps and each layer produces k (k is called growth
rate) feature maps, it follows that a dense block with l layers
produces kl = k0+k×(l−1) feature maps. This construction of
dense block has several advantages: alleviating the vanishing-
gradient problem, strengthening feature propagation, and en-
couraging feature reuse.

The architecture of the shape autoencoder is illustrated in
Fig.2(b), which consists of a shape encoder and a decoder. The
shape encoder is a typical 3D DenseNet, which is composed of
a convolutional (Conv) layer, a pooling layer, three transition
layers, and four dense blocks. In order to reduce the spatial
resolution of feature maps, an average pooling layer and three
transition layers are used. The transition layer consists of an
1× 1× 1 convolutional layer followed by a 2× 2× 2 average
pooling layer. To further improve model compactness, the
number of feature maps is reduced by half at transition layers.
The shape decoder consists of two upsampling layers, two
convolutional layers, and a bilinear interpolation operation.
Each upsampling is the backwards strided (stride 4 × 4 × 4)
convolution to expand the size of feature maps [25]. Batch
normalization (BN) [33] and Rectified linear units (ReLU) are
employed after all convolutional layers and upsampling layers
except the last convolutional layer. The bilinear interpolation
is followed by logistic units to predict the probability of each
pixel belongs to liver. Except for the first convolutional layer

is with a stride of 2, all other convolutional layers are with
the same stride of 1. In order to preserve the resolution of
feature maps, we set all convolutional layers with padding in
three axes. In our experiments, we set the operation H of each
layer in all dense blocks to be BN-ReLU-Conv(1×1×1)-BN-
ReLU-Conv(3× 3× 3). This further helps reduce the number
of parameters. The dense blocks in the shape encoder are all
with k = 16. The numbers of layers in four dense blocks are
6, 12, 24 and 16, respectively. Most importantly, all operations
are implemented in 3D style.

Let fse denote the shape encoder with a liver mask y ∈
{0, 1}W×H×S as input (W,H,S indicate the width, height,
and number of slices of input), fsd denote the shape decoder
with fse(y) as input, and g denote the logistic operation. Then,
the output of the shape autoencoder can be written as

ySA = g(fsd(fse(y))). (1)

To train the network, we use the negative log-likelihood as the
loss function, which is described as

lossSA = −
∑
y

1

n

∑
i

yi log ySA
i +(1−yi) log(1−ySA

i ), (2)

where yi indicates the i-th pixel in the liver mask y, ySA
i

denotes the output probability of pixel i belongs to liver from
the shape autoencoder, and n denotes the total number of
pixels in y.

B. SC-SegNet

To segment liver from raw CT images, we develop a
shape-constrained densely connected segmentation network
(SC-SegNet). The architecture of the SC-SegNet illustrated
in Fig. 2(a) is designed based on FCN [25], DenseNet [27],
and U-Net [34]. The network consists of an encoder and a
decoder. The encoder has the same architecture as the shape
encoder fse. The decoder contains two steps. The first step
consists of an upsampling, a concatenation operation with the
correspondingly convoluted feature maps from the contracting
path, and a convolution. The second step consists of an
upsampling, a convolution, and a bilinear interpolation. In the
SC-SegNet, other architecture settings are same as the shape
autoencoder.

Let x ∈ RW×H×S denote a input training sample with a
ground-truth mask y ∈ {0, 1}W×H×S , fle denote the encoder
of the SC-SegNet, and fls denote the SC-SegNet. Then the
output of the SC-SegNet can be written as

ySC = g(fls(x)). (3)

Since the most used cross entropy loss treats each pixel
independently and equally, it may not be able to handle the
imbalance between different categories, and the sensitivity to
fuzzy boundaries and heterogeneous pathologies. To address
these issues, a loss function composed of four parts is designed
to train the SC-SegNet. The first part of loss is the typical cross
entropy loss,
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Fig. 2. The framework of the proposed liver segmentation method. The shape autoencoder is first trained to obtain the liver shape codes with the liver masks
as input. Then, the SC-SegNet is trained under the supervision of both the liver masks and the shape codes from the trained shape autoencoder. In the figure,
’w’ denotes the kernel size of filter, ’s’ indicates the stride, ’c’ indicates the number of output channels, ’o’ indicates the size of output feature maps, ’k’
denotes the growth rate of dense block, and ’l’ indicates the number of layers in each dense block. If not mentioned, all parameters are the same in three
axes.

𝑋𝑙 = 𝐻𝑙([𝑋0. . . 𝑋𝑙−1])

Convolution
𝒘:𝟑, 𝒄: 𝒌

Convolution
𝒘: 𝟏, 𝒄: 𝟒 × 𝒌

[𝑿𝟎, … , 𝑿𝒍−𝟏]

Fig. 3. A 4-layer dense block. The input has 5 feature maps, and each layer
in the block produces 4 feature maps. Finally, the block outputs 21 feature
maps (the same symbol definition as in Fig. 2).

lossce =
∑
(x,y)

1

n

∑
i

CE(yi, y
SC
i )

≡ −
∑
(x,y)

1

n

∑
i

yi log ySC
i + (1− yi) log(1− ySC

i ),

(4)

where ySC
i denotes the output probability of pixel i from the

SC-SegNet. The second part of loss is a shape constraint,

which minimizes the difference between fle(x) and fse(y),

losssc = α
∑
(x,y)

1

n
||fle(x)− fse(y)||22. (5)

To put it simply, we try to make the features learned by the SC-
SegNet consistent with the shape coding produced by the liver
shape autoencoder. In order to make the output probability
maps smoother inside and outside the liver, we design an edge-
preserved smoothness regularizer. The regularizer penalizes
nearby similar pixels that are assigned different outputs inside
and outside the liver, and is designed as

losssr = β
∑
(x,y)

1

n

∑
i

1

wi

∑
j∈Ωi\i

wij(fls(x)j−fls(x)i)
2. (6)

where fls(x)i indicates the value of pixel i in fls(x), Ωi is
the 5× 5× 5 neighborhood of i, wij is the contribution from
the pixel j to the pixel i, and wi is the sum of the weights
of all pixels in the neighborhood. The wij is defined in terms
of pixel intensities Ii and Ij , labels yi and yj , and network
output fls(x)j :

wij = 1(1fls(x)j>0=yj)(−1)1yi 6=yjDM(Ii, Ij), (7)

In the above function, 1A is an indicator function that re-
turns 1 when A is true, otherwise returns 0. The first term
1(1fls(x)j>0=yj) means that only the adjacent pixels whose
current prediction is the same as its true label will be used



5

for calculation. It makes sure that each pixel is updated in the
right direction. The second term (−1)1yi 6=yj equals to 1 when
yi = yj , while −1 when yi 6= yj . This is inspired by the
fact that adjacent pixels with same label should have similar
outputs, adjacent pixels with different labels should have
dissimilar outputs. The third term is the intensity difference
measure of adjacent pixels, and is defined as:

DM(Ii, Ij) =

{
1− |Ii − Ij |

1
2 yi = yj ,

|Ii − Ij |
1
2 yi 6= yj .

(8)

When yi = yj , pixels with similar intensities will have greater
weights, and when yi 6= yj , pixels with similar intensities will
have smaller weights. Due to the first indicator, we find that
pixels in the misclassification area do not participate in this
part of loss. As thus, we introduce the fourth part of loss,

lossec = γ
∑
(x,y)

1

n

∑
i

1(1fls(x)i>0 6=yi)CE(yi, y
SC
i ). (9)

This part of loss can be seen as a technique of hard negative
mining that allows the network to focus on pixels that are
misclassified [35]. Combined with the four parts of loss, the
final loss function can be written as:

loss =
∑
(x,y)

1

n

∑
i

(1 + γ1(1fls(x)i>0 6=yi))CE(yi, y
SC
i )

+ β
∑
(x,y)

1

n

∑
i

1

wi

∑
j∈Ωi\i

wij(fls(x)j − fls(x)i)
2

+ α
∑
(x,y)

1

n
||fle(x)− fse(y)||22, (10)

where α, β, γ are hyperparameters used to balance these four
parts of loss.

IV. EXPERIMENTAL SETTING

In this section, we present the details of our experimental
setup.

A. Preprocessing

We applied image preprocessing, including several steps.
First, the pixel intensity range was normalized from (-110,190
Houndsfield Unit) to (0,1). Intensity > 190 was set to 1,
and < −110 was set to 0. In order to reduce computational
complexity and memory usage, all images were resampled
to have the same resolution of 256 × 256 in the axial. All
the preprocessed steps were applied to both training and test
datasets. In the test stage, segmentation results were resampled
back to the original scale (512× 512 in the axial).

B. Data Augmentation

In our experiments, data augmentation was applied to
prevent overfitting. We used random rotation, cropping and
flipping for all training samples in both networks. First, we
randomly resampled data so that the number of slices occupied
by the liver ranged from 64 to 256 for both networks. Second,
we randomly cropped the data. For the SC-SegNet, we cropped
patches of size 256 × 256 × 256 (W = H = S = 256) from

data such that the number of slices between the center slice of
the liver and the center slice of the patch was less than 8. If
the number of slices was less than 256, we appended zeros on
both sides. Since the shape autoencoder is easier to overfit, we
augmented more samples to train the network. For the shape
autoencoder, we cropped patches of size 256× 256× 256 so
that the ratio of liver slices covered by the patch was greater
than 3

4 . Last, we randomly flipped samples with respect to the
three axes and rotated samples 90, 180, 270 degrees in the
axial.

C. Training Details and Parameter Setting

In the training stage, all hyperparameters were determined
based on the validation set (8 CT images from the training set).
Once all the hyperparameters were determined, we used all the
training data to retrain the networks. For these two networks,
the weights were initialized using the method proposed by He
et al. [36]. The batch size was set to 1 because of memory
limitation. The momentum was set to 0.9, and the weight
decay was 0.0001. Both networks were trained with 60000
iterations using stochastic gradient descent algorithm [37].
For the shape autoencoder, the initial learning rate was set
to 1, and it was decreased to 0.0001 by a ”poly” learning
rate policy where the initial learning rate was multiplied
by (1− iteration

max_iteration )
power

with power = 0.9 [38]. For
the SC-SegNet, the initial learning rate was set to 0.1, and
decreased to 0.00001 by the same policy used in the shape
autoencoder. The hyperparameter α was initialized to 100,
and decreased linearly to 0 as the number of training steps
increased. The hyperparameters β and γ were set to 0.1
and 4, respectively. In order to avoid exploding gradients
when training the networks, we applied ”gradient scaling” to
update the weights [39]. The experiments were conducted on
a desktop computer with Intel Xeon E5-2686 CPU (2.30 GHz)
and a graphics card (NVDIA TITAN V). The networks were
implemented in C++ based on the deep learning library of
cuda-convnet [40]. It took about fourteen hours to train each
network.

D. Inference Schemes

In the test stage, each CT scan was first preprocessed. If
the number of slices of the scan was bigger than 256, it was
resampled to 256. Then, the SC-SegNet took the resampled
data as input and outputted a coarse segmentation result. Since
the number of slices and the position of liver varied widely, we
calculated the initial position pi and the final position pf of the
liver based on the coarse segmentation result. Subsequently,
we resampled the data with scale (pf − pi)/160 in z axis
and then cropped a patch such that the liver lied in the
center along z axis. Following that, data augmentation was
applied to each cropped patch by rotating 90, 180, 270 in
the axial and flipping in three axes. Each augmented patch
was then independently processed by the SC-SegNet. To
obtain the segmentation results, we averaged the predictions
computed from the augmented data. Finally, we resampled
the segmentation results back to the original scale. To avoid
isolated segments, a largest connected component labeling was
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performed to refine the segmentation results. By implementing
in C++ and using a GPU-based algorithm, the total processing
time for a single scan depended on the number of slices,
ranging from 7 to 10 seconds.

V. RESULTS

A. Evaluation Metrics

According to previous studies in literature, it is not possible
to define a single evaluation metric for the image segmentation
problem. In the SLIVER07 challenge, five different perfor-
mance measures were computed, including the volumetric
overlap error (VOE) in percent, the relative volume difference
(RVD), the average symmetric surface distance (ASSD), the
root mean square symmetric surface distance (RMSD) and
the maximum symmetric surface distance (MSSD). Each error
measure was translated to a score in the range from 0 (lowest
possible score) to 100 (perfect result). Finally, the five scores
were averaged to obtain one overall score per test case. In
addition to these metrics, we also calculated the Dice similarity
coefficient (DSC) for ecah scan. According to the evaluation of
the CHAOS challenge, four evaluation metrics were utilized,
including DSC, RVD, ASSD, and MSSD. The results of these
four metrics were converted to grades at 0-100 scale further,
and combined into a final score.

B. Segmentation Results of the SC-SegNet

A total of 30 volumes from two different datasets were
used to evaluate the final segmentations of the SC-SegNet. The
segmentations of 10 test scans from the SLIVER07 challenge
were evaluated by the organizers of the SLIVER07 website.

The results of 20 scans from the CHAOS challenge were
also evaluated by the organizers.

C. Effectiveness of the Hybrid Loss

D. Effectiveness of CRF

Many CNN-based methods take further postprocessing steps
to improve the segmentation results, such as CRF, graph
cut, active contours, and surface evolution [2], [28], [30],
[31], [41]. We compared the performance of the SC-SegNet
(SegNet) with and without CRF to verify its effectiveness.

E. Comparison with Other Automatic Methods

VI. DISCUSSION

VII. CONCLUSION
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