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Accurate Liver segmentation using 3D CNNs with
high level shape constraints

Man Tan, Xiongwei Mao, Fa Wu, and Dexing Kong∗

Abstract—Automatic liver segmentation from abdominal com-
puted tomography (CT) images is a fundamental task in
computer-assisted liver surgery programs. Recently, deep con-
volutional neural networks (CNNs) are served as the first choice
in many volumetric segmentation tasks. However, the most com-
monly used cross-entropy loss treats each pixel independently and
equally, which makes the network sensitive to fuzzy boundaries
and heterogeneous pathologies, especially when the data is scarce.
In this work, we propose an automatic segmentation framework
based on a 3D CNN with a hybrid loss function. The hybrid
loss function consists of three parts. The first part is an adap-
tively weighted cross-entropy loss, which pays more attention
on misclassified pixels. The second part is an edge-preserved
smoothness loss, which guarantees that neighbouring pixels with
the same label have similar outputs, while neighbouring pixels
with different labels have dissimilar outputs. The third part of
loss is a shape constraint used to model high level structure
differences. In our experiments, data augmentation is performed
both in the training stage and the test stage. We extensively
evaluated our method on two datasets: the Segmentation of the
Liver Competition 2007 (Sliver07), and the Combined (CT-MR)
Healthy Abdominal Organ Segmentation (CHAOS) Challenge.

Index Terms—automatic liver segmentation, convolutional neu-
ral networks, hybrid loss, high level shape constraint.

I. INTRODUCTION

Accurate liver segmentation on three dimensional (3D)
computed tomography (CT) is critical in many clinical ap-
plications, such as treatment planning and postoperative as-
sessment. However, the manual delineation on each slice of
liver is a laborious and huge time-consuming process. As a
result, manual segmentation is not suited for a busy clinical
practice in high volume settings [1]. In order to accelerate and
facilitate diagnosis, therapy planning and monitoring, fast and
accurate automatic liver segmentation is highly demanded.

Automatic liver segmentation from CT images is a very
challenging task due to the wide variety of liver shapes, fuzzy
boundaries, the presence of various pathologies and high-
intensity intrahepatic veins. Fig. 1 shows some examples of CT
images illustrating the challenges. To tackle these difficulties,
extensive works have been proposed. Comprehensive surveys
on liver CT image segmentation methods and techniques were
presented by Campadelli et al. [2] and Mharib et al. [3].
Heimann et al. [4] also presented a detailed comparison study
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among different methods for liver segmentation based on
results from the ”MICCAI 2007 Grand Challenge” workshop.
Generally, all liver segmentation algorithms can be categorized
into three classes according to the image features they work on,
including gray level based methods, structure based methods
and texture based methods [5].

Gray level intensity is the most obvious feature of CT
images. Many gray level based segmentation algorithms are
developed, including region growing methods [6], [7], active
contours [8], [9], graph cuts [10], [11], clustering based
algorithms [12], [13] and so on. For example, Rusko et al. [14]
first determined a seed region based on intensity histogram and
separated the heart from the liver to eliminate over-segmented
regions. Then, they employed an advanced region growing
method to segment the liver region followed by various
postprocessing steps to prevent under-segmentation. Lim et
al. [15] extracted the initial liver volume by exploiting prior
information from manually segmented CT samples. Next, they
utilized multiscale morphological filters with region-labeling
and clustering to detect the search range and generate the
initial liver boundaries. Finally, contour-based segmentation
was applied to find the final liver contour. Massoptier et al.
[16] used the mean shift filter to remove the noise from
homogenous areas while keeping clear and sharp edges. And
then, they applied a graph cut based method initialized by
an adaptive threshold to segment the liver. Zhao et al. [13]
employed a fuzzy C-means clustering algorithm and mor-
phological reconstruction filtering to segment the initial liver
CT image. Then, a neural network was trained to classify
the candidate regions. Although some of the aforementioned
approaches have achieved promising performance, there are
some drawbacks in gray level based methods: they need
additional algorithms for initial conditions (seed points, initial
contours/regions), and may be sensitive to initial conditions;
they are challenging to prevent over-segmentation caused by
similar intensities between target and background regions, and
avoid under-segmentation caused by inhomogeneous target
regions.

The central hypothesis of structure based methods is that
structures of interested objects have a repetitive form of ge-
ometry. Generally, deformable models, statistical shape models
(SSMs), and probabilistic atlases built by a set of examples of
shape are employed to generate segmentations. Kainmuller et
al. [17] presented a fully automatic 3D segmentation method
for the liver based on a combination of a constrained free-form
and statistical deformable model. Erdt et al. [18] presented a
fully automatic multi-tiered statistical shape model for the liver
that combined learned local shape constraints with observed
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shape deviation during adaptation. Van et al. [19] used a sta-
tistical classifier and two types of features, gray-level features
and location features obtained from a multi-atlas registration
procedure, to label pixels. Structure based methods are more
robust by capturing anatomical knowledge about the shape,
size and position of liver. However, structure based methods
may not model the large shape variations well with limited
training data.

In texture based segmentations, a feature-based classifier is
trained to label unseen images. Luo et al. [20] used wavelet
coefficients as texture descriptors and implemented support
vector machines (SVMs) to classify the data into pixel-wised
liver area or non-liver area. Then, integrated morphological
operations were designed to remove noise and delineate the
liver. Ling et al. [21] presented a hierarchical framework to
efficiently and effectively monitor the accuracy propagation
in a coarse-to-fine fashion. And marginal space learning and
steerable features were applied for robust boundary inference.
Unfortunately, these methods heavily rely on handcrafted fea-
tures and do not take full advantage of 3D spatial information.

In recent years, with the remarkable success of deep convo-
lutional neural networks (CNNs) in nature image processing
[22]–[26], many studies have used the representative features
learned by CNNs to deal with the segmentation of liver.
Dou et al. [27] presented a novel 3D deeply supervised fully
convolutional network for automatic liver segmentation. They
further employed a fully connected conditional random field
(CRF) [28] to refine the segmentation results. Finally, they
achieved a volumetric overlap error (VOE) of 5.42% and an
average symmetric surface distance (ASSD) of 0.79 mm on
the Sliver07 dataset [4]. Hu et al. [29] proposed an automatic
segmentation framework based on a 3D CNN and globally
optimized surface evolution. They first used a trained deep
3D CNN to learn a subject-specific probability map of liver
that was acted as a shape prior. Then, both global and local
appearance information from the prior segmentation were
adaptively incorporated into a segmentation model, which was
globally optimized in a surface evolution way. Finally, they
achieved a mean Dice similarity coefficient (DSC) of 97.25%,
and an ASSD of 0.84 mm on the Sliver07 dataset. Compared
to previous methods, these methods are superior as they can
automatically produce a subject-specific segmentation prob-
ability map without difficult handcrafted features, complex
registration or shape deformation. However, these methods
heavily rely on image intensities. Thus, the probability maps
still suffer from some limitations of gray level based methods.
To solve these shortcomings, these methods all take further
postprocessing steps to improve the segmentation results. It’s
worth noting that CNNs usually take only a few seconds
to generate the probability maps, while the postprocessing
process (e.g. graph cut [30], CRF [27], level set [31]) often
takes tens or even hundreds of seconds.

In this work, we propose a novel end-to-end system, called
shape-constrained densely connected segmentation network
(SC-SegNet). Compared with other existing algorithms, there
are two major novelties in the proposed framework:
• We design a hybrid loss to train the segmentation net-

work. The loss consists of three parts, including an
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Fig. 1. Examples of contrast-enhanced CT images illustrating the challenges
for accurate liver segmentation. Each row shows the examples form the
CHAOS challenge, and the Sliver07 challenge, respectively.

adaptively weighted cross entropy, an edge-preserved
smoothness loss and a high-level shape constraint.

• We validated the proposed method on two separate clin-
ical databases.

This paper is organized in the following manner. We start
by introducing the data used in our study in Section II and
explaining the details of our system in Section III. In Section
IV, we present the details of our experimental setup. And
in Section V, we report the results of a set of experiments
and compare our method with other related works. Further
discussion on some key issues is presented in Section VI.
Finally, the summary is given in Section VII.

II. MATERIALS

In our experiments, two different datasets are separately
processed and validated. The first dataset is from the CHAOS
challenge [32]. There are five competition categories in this
challenge, we only consider the task of liver segmentation
from CT images. This dataset only contains healthy livers
aligned in the same direction and patient position. Among
then, there are 20 clinical images with reference segmentation
and 20 test images without available ground-truths. All images
are acquired from upper abdomen area at portal venous phase
after contrast agent injection and have the same axial dimen-
sions of 512×512 with slice number varying from 77 to 105.
The pixel spacing varies from 0.7 to 0.8 mm in x-y direction,
and slice distance varies from 3.0 to 3.2 mm. The second
dataset is from the Sliver07 challenge [4]. It includes 20
clinical images with reference segmentation and 10 test images
without available ground-truths for participants. All images are
acquired contrast-dye-enhanced in the central venous phase
and have the same axial dimensions of 512×512 with slice
number varying from 64 to 502. The pixel spacing varies from
0.55 to 0.8 mm in x-y direction, and slice distance varies from
1.0 to 3.0 mm. Most images in the study are pathologic and
include tumors, metastasis and cysts of different sizes. Some
examples of CT scans are shown in Fig. 1.

III. METHODS

The framework of our method is presented in Fig. 2. Two
networks are incorporated: a liver shape autoencoder and a
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Fig. 2. The framework of the proposed liver segmentation method. The shape autoencoder is first trained to obtain the liver shape codes with the liver masks
as input. Then, the SC-SegNet is trained under the supervision of both the liver masks and the shape codes. In the figure, ’w’ denotes the kernel size of filter,
’s’ indicates the stride, ’c’ indicates the number of output channels, ’o’ indicates the size of output feature maps, ’k’ denotes the growth rate of dense block,
and ’l’ indicates the number of layers in each dense block. If not mentioned, all parameters are the same in three axes.

shape-constrained densely connected segmentation network
(SC-SegNet). We employ the cascaded learning strategy to
train the system. First, the liver shape autoencoder is trained
to obtain compressed codes of liver shapes. Then, the SC-
SegNet is trained under the supervision of both the segmen-
tation masks and the learned shape codes. In the following
subsections, we will describe the system in detail.

A. Liver Shape Autoencoder
In order to obtain compressed codes of liver shapes, many

methods can be used, such as SSMs and autoencoders. SSMs
are widely used to analyse shape variations. However, due to
the large variations of shape, the liver is a very challenging
structure to describe with SSMs [4]. As thus, we use an
autoencoder to model the liver shape.

The shape autoencoder is designed based on the structure of
DenseNet [26], which uses densely connected blocks (dense
blocks) to ensure maximum information flow between layers.
The architecture of the dense block is shown in Fig. 3. For
each layer in the block, the feature maps of all preceding layers
are used as input, and its own feature maps are used as input
for all subsequent layers. If the input of this block has k0

feature maps and each layer produces k (k is called growth
rate) feature maps, it follows that a dense block with l layers
produces kl = k0 + k× (l− 1) feature maps. Due to its dense
connectivity pattern, dense block has several advantages: alle-
viating the vanishing-gradient problem, strengthening feature
propagation, and encouraging feature reuse.

𝑋𝑙 = 𝐻𝑙([𝑋0. . . 𝑋𝑙−1])

Convolution
𝒘:𝟑, 𝒄: 𝒌

Convolution
𝒘: 𝟏, 𝒄: 𝟒 × 𝒌

[𝑿𝟎, … , 𝑿𝒍−𝟏]

Fig. 3. A 4-layer dense block. The input has 5 feature maps, and each layer in
the block produces k = 4 feature maps. Finally, the block outputs 21 feature
maps (the same symbol definition as in Fig. 2).

The architecture of the shape autoencoder is illustrated in
Fig.2(b), which consists of a shape encoder and a decoder. The
shape encoder is a typical 3D DenseNet, which is composed of
a convolutional (Conv) layer, a pooling layer, three transition
layers, and four dense blocks. In order to reduce the spatial
resolution of feature maps, an average pooling layer and three
transition layers are used. The transition layer consists of an
1× 1× 1 convolutional layer and a 2× 2× 2 average pooling
layer. To further improve model compactness, the number of
feature maps is reduced by half at transition layers. The shape
decoder consists of two upsampling layers, two convolutional
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layers, and a bilinear interpolation operation. Each upsampling
is the backwards strided (stride 4 × 4 × 4) convolution to
expand the size of feature maps [24]. Batch normalization
(BN) [33] and Rectified linear units (ReLU) are employed
after all convolutional layers and upsampling layers except the
last convolutional layer. The bilinear interpolation is followed
by logistic units to predict the probability of each pixel that
belongs to liver. Except for the first convolutional layer is
with a stride of 2, all other convolutional layers are with the
stride of 1. In order to preserve the resolution of feature maps,
we set all convolutional layers with padding in three axes.
In our experiments, we set the operation H of each layer in
all dense blocks to be BN-ReLU-Conv(1× 1× 1)-BN-ReLU-
Conv(3 × 3 × 3). This further helps reduce the number of
parameters. The dense blocks in the shape encoder are all
with k = 16. The numbers of layers in four dense blocks are
6, 12, 24 and 16, respectively. Most importantly, all operations
are implemented in 3D style.

Let fse denote the shape encoder with a liver mask y ∈
{0, 1}W×H×S as input (W,H,S indicate the width, height,
and number of slices of input), fsd denote the shape decoder
with fse(y) as input, and g denote the logistic operation. Then,
the output of the shape autoencoder can be written as

ySA = g(fsd(fse(y))). (1)

To train the network, we use the negative log-likelihood as the
loss function, which is described as

lossSA = −
∑
y

1

n

∑
i

yi log ySA
i +(1−yi) log(1−ySA

i ), (2)

where yi indicates the i-th pixel of the liver mask y, ySA
i

denotes the output probability of pixel i that belongs to liver
from the shape autoencoder, and n denotes the total number
of pixels of y.

B. SC-SegNet

With the help of the shape codes learned by the proposed
shape autoencoder, we develop a shape-constrained densely
connected segmentation network (SC-SegNet). The architec-
ture of the SC-SegNet illustrated in Fig. 2(a) is designed
based on FCN [24], DenseNet [26], and U-Net [34]. The
network consists of an encoder and a decoder. The encoder has
the same architecture as the shape encoder fse. The decoder
contains two steps. The first step consists of an upsampling, a
concatenation operation with the correspondingly convoluted
feature maps from the contracting path, and a convolution.
The second step consists of an upsampling, a convolution, and
a bilinear interpolation. In the SC-SegNet, other architecture
settings are same as the shape autoencoder.

Let x ∈ RW×H×S denote a training sample with a ground-
truth mask y ∈ {0, 1}W×H×S , fle denote the encoder of the
SC-SegNet, and fls denote the whole SC-SegNet. Then the
output of the SC-SegNet can be written as

ySC = g(fls(x)). (3)

Since the most used cross-entropy loss treats each pixel
independently and equally, it may not be able to handle the

imbalance between different categories, fuzzy boundaries and
heterogeneous pathologies. To address these issues, a loss
function composed of four parts is proposed to train the SC-
SegNet. The first part of loss is the typical cross-entropy loss,

lossce =
∑
(x,y)

1

n

∑
i

CE(yi, y
SC
i )

≡ −
∑
(x,y)

1

n

∑
i

yi log ySC
i + (1− yi) log(1− ySC

i ),

(4)

where ySC
i denotes the output probability of pixel i from the

SC-SegNet. The second part of loss is a shape constraint,
which minimizes the difference between fle(x) and fse(y),

losssc =
∑
(x,y)

1

n
||fle(x)− fse(y)||22. (5)

To put it simply, we try to make the features learned by the SC-
SegNet consistent with the shape codes produced by the liver
shape autoencoder. In order to make the output probability
maps smoother inside and outside the liver, we design an edge-
preserved smoothness regularizer. The regularizer penalizes
nearby similar pixels that are assigned different outputs inside
and outside the liver, and is designed as

losssr =
∑
(x,y)

1

n

∑
i

1

wi

∑
j∈Ωi\i

wij(fls(x)j − fls(x)i)
2. (6)

where fls(x)i indicates the value of pixel i in fls(x), Ωi is
the 5× 5× 5 neighborhood of i, wij is the contribution from
the pixel j to the pixel i, and wi is the sum of the weights of
all pixels in the neighborhood. Based on pixel intensities Ii
and Ij , labels yi and yj , and network output fls(x)j , wij is
defined as

wij = 1(1fls(x)j>0=yj)(−1)1yi 6=yjDM(Ii, Ij), (7)

where 1A is an indicator function that returns 1 when A is
true, otherwise returns 0. The first term 1(1fls(x)j>0=yj) means
that only the adjacent pixels whose current prediction is the
same as its true label will be used for calculation. It makes sure
that each pixel is updated in the right direction. The second
term (−1)1yi 6=yj equals to 1 when yi = yj , while −1 when
yi 6= yj . This is inspired by the fact that adjacent pixels with
same label should have similar outputs, adjacent pixels with
different labels should have dissimilar outputs. The third term
is the intensity difference measure of adjacent pixels, and is
defined as

DM(Ii, Ij) =

{
1− |Ii − Ij |

1
2 yi = yj ,

|Ii − Ij |
1
2 yi 6= yj .

(8)

When yi = yj , pixels with similar intensities will have greater
weights, and when yi 6= yj , pixels with similar intensities will
have smaller weights. Fig. 4 shows a simple example of the
loss of a pixel in the 3× 3 neighborhood.
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Fig. 4. An example of losssr . In the 3 × 3 neighborhood image of the
central pixel, different shapes indicate different class, and red edges indicate
misclassified pixels (a). Given whether the network correctly classifies each
pixel and whether the nearby pixels are in the same class, all adjacent pixels
can be divided into three groups. Correctly classified adjacent pixels with the
same label should have similar outputs, and similar intensities lead to bigger
weights (b). Correctly classified adjacent pixels with different labels should
have dissimilar outputs, and similar intensities lead to smaller weights (c).
Misclassified pixels are ignored because they will update the output of the
central pixel in the wrong direction (d).

 

over-segmented area under-segmented area 

correctly segmented area 

Fig. 5. An example of the pixels processed by lossec. Suppose the black
line delineates the segmentation results produced by the network, and the red
line delineates the reference segmentation results. It can be seen that lossec
focuses on under- and over-segmented areas (in gray color).

Due to the first indicator in (6), we find that pixels in the
misclassification area do not participate in this part of loss. As
thus, we introduce the fourth part of loss as

lossec =
∑
(x,y)

1

n

∑
i

1(1fls(x)i>0 6=yi)CE(yi, y
SC
i ). (9)

This part of loss can be seen as a technique of hard negative
mining that allows the network to focus on pixels that are
misclassified [35]. Fig. 5 shows an example of the pixels
processed by lossec.

Combined with the four parts of loss, the final loss function
can be written as:

loss =
∑
(x,y)

1

n

∑
i

(1 + γ1(1fls(x)i>0 6=yi))CE(yi, y
SC
i )

+ β
∑
(x,y)

1

n

∑
i

1

wi

∑
j∈Ωi\i

wij(fls(x)j − fls(x)i)
2

+ α
∑
(x,y)

1

n
||fle(x)− fse(y)||22, (10)

where α, β, γ are hyperparameters used to balance these four
parts of loss. The final hybrid loss can be considered to contain
three parts, including an adaptively weighted cross entropy,
an edge-preserved smoothness loss and a high-level shape
constraint.

IV. EXPERIMENTAL SETTING

In this section, we present the details of our experimental
setup. Importantly, all settings used in both datasets are the
same.

A. Preprocessing

We applied image preprocessing, including several steps.
First, the pixel intensity range was normalized from (-110,190
Houndsfield Unit) to (0,1). Intensity > 190 was set to 1,
and < −110 was set to 0. In order to reduce computational
complexity and memory usage, all images were resampled to
have the same resolution of 256 × 256 in the axial. In the
test stage, segmentation results were resampled back to the
original scale (512 × 512 in the axial). All the preprocessed
steps were applied to both training and test datasets.

B. Data Augmentation

In our experiments, data augmentation was applied to pre-
vent overfitting. We used random scaling, rotation, cropping
and flipping for all training samples in both networks. First,
we randomly interpolated data so that the number of slices
occupied by the liver ranged from 64 to 256 for both networks.
Second, we randomly cropped the data. For the SC-SegNet, we
cropped patches of size 256×256×256 (W = H = S = 256)
from data such that the number of slices between the center
slice of the liver and the center slice of the patch was less
than 8. If the number of slices of data was less than 256, we
appended zeros on both sides. Since the shape autoencoder
is easier to overfit, we augmented more samples to train the
network. For the shape autoencoder, we cropped patches of
size 256×256×256 so that the ratio of liver slices covered by
the patch was greater than 0.75. Finally, we randomly flipped
samples with respect to the three axes and rotated samples 90,
180, 270 degrees in the axial.

C. Parameter Setting and Training Details

In the training stage, all hyperparameters were determined
based on the validation set (4 CT images from the training
set). We performed a 5-fold cross validation in our experiment.
Once all the hyperparameters were determined, we used all
the training data to retrain the networks. For both networks,
the weights were initialized using the method proposed by He
et al. [36]. The batch size was set to 1 because of memory
limitation. The momentum was set to 0.9, and the weight
decay was 0.0001. All networks were trained using stochastic
gradient descent algorithm [37]. The shape autoencoders were
trained with 150000 iterations, and the Sc-SegNets were
trained with 30000 iterations. For the shape autoencoders,
the initial learning rate was set to 1, and it was decreased
to 0.0001 by a ”poly” learning rate policy where the initial
learning rate was multiplied by (1− iteration

max_iteration )
power

with
power = 0.9 [38]. For the SC-SegNets, the initial learning
rate was set to 0.1, and decreased to 0.0001 by the same policy
used to train the shape autoencoders. The hyperparameter α
was initialized to 100, and decreased linearly to 0 as the
number of training steps increased. The hyperparameters β
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and γ were set to 0.1 and 4, respectively. In order to avoid
exploding gradients when training the networks, we applied
”gradient scaling” to update the weights [39]. The experiments
were conducted on a desktop computer with Intel Xeon E5-
2686 CPU (2.30 GHz) and a graphics card (NVDIA TITAN
V). The networks were implemented in C++ based on the deep
learning library of cuda-convnet [40]. It took about fourteen
hours to train each network.

D. Inference Schemes

In the test stage, each CT scan was first preprocessed. If
the number of slices of the scan was bigger than 256, it was
resampled to 256. Then, the SC-SegNet took the resampled
data as input and outputted a coarse segmentation result. Since
the number of slices and the position of liver varied widely, we
calculated the initial position pi and the final position pf of the
liver based on the coarse segmentation result. Subsequently,
we resampled the data with scale (pf − pi)/160 in z axis
and then cropped a patch such that the liver lied in the center
along z axis. Following that, data augmentation was applied
to each cropped patch by rotating 90, 180, 270 in the axial
and flipping in three axes. Each augmented patch was then
independently processed by the SC-SegNet. To obtain the seg-
mentation result, we averaged the predictions computed from
the augmented data, and resampled the segmentation result
back to the original scale. To avoid isolated segments, a largest
connected component labeling and hole filling were finally
performed to refine the segmentation result. By implementing
in C++ and using a GPU-based algorithm, the total processing
time for a single scan depended on the number of slices,
ranging from 7 to 10 seconds.

V. RESULTS

A. Evaluation Metrics

According to previous studies in literature, it is not possible
to define a single evaluation metric for the image segmentation
problem. In the Sliver07 challenge, five different performance
measures were computed, including the volumetric overlap
error (VOE) in percent, the relative volume difference (RVD),
the average symmetric surface distance (ASSD), the root
mean square symmetric surface distance (RMSD) and the
maximum symmetric surface distance (MSSD). Each error
measure was translated to a score in the range from 0 (lowest
possible score) to 100 (perfect result). Finally, the five scores
were averaged to obtain one overall score per test case. In
addition to these metrics, we also calculated the Dice similarity
coefficient (DSC) for ecah scan. According to the evaluation of
the CHAOS challenge, four evaluation metrics were utilized,
including DSC, relative absolute volume difference (RAVD),
ASSD, and MSSD. The results of these four metrics were
converted to grades at 0-100 scale further, and combined into
a final score.

B. Segmentation Results of the SC-SegNet

A total of 30 volumes from two different datasets were
used to evaluate the performance of the SC-SegNet. The

Fig. 6. Examples of segmentation results from the Sliver07 challenge. The
three rows display the results generated by the SC-SegNet viewed in the
axial plane, sagittal, and coronal plane, respectively. The red lines are the true
segmentation results provided by the corresponding challenge organizers. The
yellow lines are produced by the SC-SegNet.

Fig. 7. Examples of segmentation results from the CHAOS challenge (the
same settings as in Fig. 6).

segmentations of 10 test scans from the Sliver07 challenge
were evaluated by the organizers of the challenge. Fig. 6 shows
some examples of our segmentation results on the validation
set of the Sliver07 challenge in the axial, sagittal, and coronal
plane. As can be seen, the SC-SegNet can deal well with the
presence of pathologies and inhomogeneous appearances.

The results of 20 scans from the CHAOS challenge were
also evaluated by the organizers of the challenge. Fig. 7 shows
several typical results on the validation set from the CHAOS
challenge. We can observe that livers with various shapes can
be well segmented.

C. Effectiveness of the Hybrid Loss

To validate the effectiveness of the hybrid loss, we compared
the behaviors of the SC-SegNet and networks which have the
same architecture but different loss functions. Table I shows
the DSC scores of different configurations on the training data
of the Sliver challenge and the CHAOS challenge by a 5-fold
cross validation. It can be seen that combining all three parts
of the loss can achieve the best average DSC scores of 97.71%
and 97.48% on the two training datasets, which indicates the
hybrid loss can improve the segmentation performance. We
also compared the performance of networks with the same
architecture but different loss functions, including the hybrid
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TABLE I
COMPARISON OF NETWORKS WITH DIFFERENT CONFIGURATIONS ON THE TRAINING DATASETS OF THE SLIVER07 CHALLENGE AND THE CHAOS

CHALLENGE BY A 5-FOLD CROSS VALIDATION. IN EACH TABLE, THE TWO NUMBERS ARE THE DSC SCORES IN THE CORRESPONDING FOLDS OF THE
SLIVER CHALLENGE AND THE CHAOS CHALLENGE, RESPECTIVELY. THE BEST AVERAGE DSC SCORE IS MARKED IN BOLD.

(α, β, γ) (0, 0, 0) (100, 0, 0) (0, 0.1, 0) (0, 0, 4) (100, 0.1, 0) (100, 0, 4) (0, 0.1, 4) (100, 0.1, 4)

fold 1 97.74/96.74 97.65/97.04 97.81/96.62 97.73/96.55 97.71/96.93 97.77/97.03 97.82/96.82 97.78/97.15
fold 2 97.30/97.44 97.33/97.52 97.40/97.53 97.47/97.55 97.43/97.67 97.52/97.58 97.45/97.60 97.41/97.64
fold 3 97.47/96.96 97.65/97.22 97.43/97.09 97.72/97.26 97.67/97.22 97.73/97.45 97.70/97.37 97.82/97.43
fold 4 97.65/97.26 97.72/97.71 97.45/97.31 97.45/97.64 97.51/97.69 97.46/97.72 97.36/97.57 97.72/97.77
fold 5 97.06/97.10 97.60/97.29 97.08/97.24 97.19/97.32 97.65/97.29 97.67/97.24 97.38/97.34 97.81/97.43
Avg 97.44/97.10 97.59/97.36 97.43/97.16 97.51/97.27 97.59/97.36 97.63/97.41 97.54/97.34 97.71/97.48

TABLE II
COMPARISON OF NETWORKS WITH THE SAME ARCHITECTURE BUT

DIFFERENT LOSS FUNCTIONS. IN EACH TABLE, THE TWO NUMBERS ARE
THE DSC SCORES IN THE CORRESPONDING FOLDS OF THE SLIVER

CHALLENGE AND THE CHAOS CHALLENGE, RESPECTIVELY. THE BEST
AVERAGE DSC SCORE IS MARKED IN BOLD.

Loss Cross Entropy DICE Loss Focal Loss Our Loss

fold 1 97.74/96.74 97.26/95.99 97.67/96.39 97.78/97.15
fold 2 97.30/97.44 97.15/97.08 97.36/97.40 97.41/97.64
fold 3 97.47/96.96 97.54/97.23 97.40/97.16 97.82/97.43
fold 4 97.65/97.26 96.96/97.34 97.24/97.39 97.72/97.77
fold 5 97.06/97.10 96.77/97.04 96.88/97.22 97.81/97.43
Avg 97.44/97.10 97.13/96.93 97.31/97.11 97.71/97.48

loss, the cross-entropy loss (called SegNet), the dice loss [41],
and the focal loss [42] in Table II. The networks with the
cross-entropy loss were trained using the same learning rate
as that used for the SC-SegNet, and were corresponding to the
configuration of (α, β, γ) = (0, 0, 0). The learning rate was set
to 0.1, and the momentum was set to 0.9 for the networks with
the dice loss. We found that as the hyperparameter γ of the fo-
cal loss became larger, the performance deteriorated. Then, the
networks with the focal loss were trained with a learning rate
of 0.2 and momentum of 0.9, and the hyperparameters of α and
γ were set to 0.5 and 0.25, respectively. We can see that our
proposed hybrid loss outperformed the cross-entropy loss, the
dice loss, and the focal loss with 0.27%/0.38%, 0.58%/0.55%,
and 0.40%/0.37% improvement on DSC, respectively.

D. Effectiveness of CRF

Many CNN-based methods take further postprocessing steps
to improve the segmentation results, such as CRF, graph cut,
active contours, and surface evolution [27], [29]–[31], [43]. To
verify the effectiveness of postprocessing steps, we compared
the performance of the SC-SegNet (SegNet) with and without
a fully connected CRF model [28]. The hyperparameters of
CRF were optimized separately for the two challenges using
their respective training scans.

VI. DISCUSSION

Accurate segmentation of liver is essential in clinical diag-
nosis. In this paper, we propose an automatic liver segmen-
tation method based on 3D CNNs. A hybrid loss function
consisting of three parts is used to better guide the learned

features of network. To demonstrate the effectiveness of the
loss, quantitative and qualitative comparisons are performed
on two datasets.

Table I shows the detail results of different configurations
of the loss. It proves that combining all three parts of the
loss improves the segmentation performance the most. Table
II compares the performance of different loss functions. It
can be seen that our hybrid loss is more suitable for liver
segmentation under the situation. We also find that the dice
loss and the focal loss achieve no improvement compared
to the basic cross-entropy loss. This may be because these
loss functions are more suited for imbalanced segmentation.
However, the most difficulties in liver segmentation are the
highly varied liver shapes, fuzzy boundaries, and the presence
of pathologies. Although the focal loss focuses on imbalanced
segmentation and hard-sample mining, its performance is also
limited when the training dataset is small.

VII. CONCLUSION

In this paper, a fully automatic liver segmentation method
is presented. Rather than directly training the segmentation
network with the cross-entropy loss, we propose to use a
hybrid loss function. The hybrid loss consists of an adaptively
weighted cross entropy, an edge-preserved smoothness loss,
and a shape constraint.
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