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What is Artificial Intelligence (AI)

▪ Many definitions

▪ The one l like: AI makes it possible for machines to 
learn from experience, adjust to new inputs, and 
perform human-like tasks

– Learn from human

– Learn by itself

– Do human’s job

© Steve Jiang, Ph.D., MAIA Lab, 20182
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AI Is Changing The World

3 © Steve Jiang, Ph.D., MAIA Lab, 2018

▪ Self driving cars
▪ Computer vision
▪ Healthcare
▪ Finance and economics
▪ … …
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Supervised Learning – From A to B

DNN

© Steve Jiang, Ph.D., MAIA Lab, 20186
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AlphaGo Master

▪ 5/2017 

– AlphaGo vs Ke Jie 9p (currently No.1 Go player in the world) 

– The final battle between man and machine in the board game 

– Result: 3 to 0

– AlphaGo: no more competitive Go playing

© Steve Jiang, Ph.D., MAIA Lab, 20177
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Radiation Oncology

Deep Q-network (DQN) playing Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

© Steve Jiang, Ph.D., MAIA Lab, 20179
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Artificial General Intelligence

▪ Systems that can learn to solve any complex 
problem without needing to be taught how 

▪ Agents should not be pre-programmed, but rather, 
able to learn automatically from their raw inputs 
and reward signals from the environment

© Steve Jiang, Ph.D., MAIA Lab, 201710

Radiation Oncology © Steve Jiang, Ph.D., MAIA Lab, 201811

Narrow AI = Electricity; AGI = nothing we have seen before! - Steve Jiang 

Radiation Oncology

Artificial Intelligence in Medicine (AIM)

▪ Medical imaging and diagnostics

▪ Clinical decision support

▪ Treatment outcome prediction

▪ Precision and individualized medicine 

▪ Prediction of chronic disease trajectories

▪ Healthcare delivery in resource limited regions

▪ Care delivery optimization, automation, safety

▪ Computational drug discovery and development

▪ Medical error detection and prevention

▪ Assisted care and chronic disease management with 
wearable sensors

12 © Steve Jiang, Ph.D., MAIA Lab, 2018
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AI in Radiation Oncology
▪ AI may greatly improve the treat outcome and reduce 

toxicity by providing

– More precise cancer detection, diagnosis, staging etc

– More personalized and precision treatment strategy 

– More accurate target delineation and organ segmentation

– Better and faster treatment planning and treatment delivery

– More convenient, frequent, and accurate patient follow up

▪ AI may greatly improve patient safety by 

– Automatically detecting and preventing medical errors

– Using wearable sensors and RTLS technologies

▪ AI may greatly reduce disparity by 

– Transferring the high quality care from major academic centers to 
under-served patients via well trained AI software tools

13 © Steve Jiang, Ph.D., MAIA Lab, 2017
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UT Southwestern MAIA Lab
Medical Artificial Intelligence and Automation

© Steve Jiang, Ph.D., MAIA Lab, 201714

▪What we are doing for AI in RO at UTSW MAIA Lab

▪ AAPM presentations

Radiation Oncology

AI for Medical Imaging

15
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CT Recon w/ Human-Like Auto Parameter Adjusting

16 © Chenyang Shen, Ph.D.  and Xun Jia, Ph.D., MAIA Lab, 2018

pixel-wise parameters

Bad parameters Manual parameters

(image level)

Ideal parameters

Shen, …, Jia, IEEE TMI 37(6):1430–1439, 2018
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CT Recon w/ Human-Like Auto Parameter Adjusting

17

▪ A parameter tuning policy network 

(PTPN) is constructed and trained 

using end-to-end deep 

reinforcement learning (DRL)

Shen, …, Jia, IEEE TMI 37(6):1430–1439, 2018

© Chenyang Shen, Ph.D.  and Xun Jia, Ph.D., MAIA Lab, 2018

Radiation Oncology18

Testing Results on Simulation Data

(a) Ground Truth CT

(b) Reconstructed 
low-dose CT with 
random initial 
parameters

(c) Reconstructed 
low-dose CT with 
PTPN tuned 
parameters (pixel-
wise)

(d) Reconstructed 
low-dose CT with 
manually tuned 
parameters (image 
level)

(e) PTPN tuned 
parameter map

(f) Optimal parameter 
map

Shen, …, Jia, IEEE TMI 37(6):1430–1439, 2018

© Chenyang Shen, Ph.D.  and Xun Jia, Ph.D., MAIA Lab, 2018
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Testing Results on Experimental Data

(a)Reconstructed low-dose CT 

with random initial parameters

(b)Reconstructed low-dose CT 

with manually tuned 

parameters (image level)

(c)Reconstructed low-dose CT 

with PTPN tuned parameters 

(pixel-wise)

(d)PTPN tuned parameter map

Shen, …, Jia, IEEE TMI 37(6):1430–1439, 2018

© Chenyang Shen, Ph.D.  and Xun Jia, Ph.D., MAIA Lab, 2018
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DCGAN - Deep convolutional generative adversarial network

CT Synthetization from MRI

▪ Unpaired CT and MR images from 77 brain patients who 
underwent brain tumor radiotherapy

▪ CT images were acquired with a 512x512 matrix and voxel size 
0.68mm×0.68mm×1.50mm

▪ MR images were acquired at 1.5T using a post-gadolinium 2D T1-
weighted spin echo sequence with TE/TR = 15/3500 ms

Radiation Oncology21

CT Synthetization 

from MRI
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CBCT to CT Translation using CycleGAN

22

Synthesized CBCT

DiscriminatorA

GeneratorA
CBCT to CT

CBCT

DiscriminatorB
Decision

[0,1]

GeneratorB
CT to CBCT

Decision
[0,1]

Synthesized CT

CT

Cycle CBCT Cycle CT

▪Generator

–21 layers U-Net architecture

▪Discriminator

–142×142 patch GAN

▪ Loss function

–Adversarial loss

–Cycle consistency loss

–Identity mapping loss

Radiation Oncology23

▪ Training and validation data

–13 H&N patients with unpaired CBCT and CT images

–80 slices/patient, totally 1360 slices

–960 slices for training, 80 slices for validation

▪ Testing data

–4 patients with CBCT and deformed CT images

–Totally 320 slices 

CBCT to CT Translation using CycleGAN

Radiation Oncology24

▪ SCT is accurate in both spatial and intensity domains

–Accurate in CT numbers like CT

–Accurate in anatomic structures like CBCT

CBCT to CT Translation using CycleGAN

CBCT Synthesized CT CT
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Results: Line Profiles 

25

CBCT

SCT

CT

Radiation Oncology

From 4DCT Image to Ventilation Image

▪ Generating functional lung ventilation image from anatomical 
4D CT images using CNN

26

Input Predicted Truth Predicted on CT

© Yuncheng Zhong, Ph.D. and Jing Wang, Ph.D., MAIA Lab, 2018
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Super-Resolution of MR Spectroscopic Imaging (MRSI)

Hypothesis: 
Low resolution MRSI plus T1 weighted MRI should have 
sufficient information to reconstruct high resolution MRSI

© Zohaib Iqbal, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018

128 x 128

Low Resolution 

Glutamate Image

High Resolution 

Glutamate Image
Deep

Learning

Model

T1-weighted Image

128 x 128 32 x 32 (or less)

HD U-Net
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Super-Resolution MRSI: Testing Results (Simulation)

Low Res Reconstruction Gold Standard

Recon Error

D-UNet

Total MSE over 169 Test Subjects

Bicubic Interpolation Bicubic Int. Error

© Zohaib Iqbal, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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Super-Resolution MRSI: Testing Results (In Vivo)

Experimental

~40 min acq.
MSD Volunteer 1 – 0.00513 

MSD Volunteer 2 – 0.00390

MSD Volunteer 3 – 0.00674

Average for testing set: 0.00575

D-UNet

© Zohaib Iqbal, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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AI for Diagnosis and Prognosis

30
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▪ Digital Breast Tomosynthesis (DBT): better accuracy 
than mammography especially for dense breasts

▪ 496 cases with mass-like lesions

▪ Ground truth for mass detection/segmentation

– 3 radiologists, each with > 5 years experience in breast screening

▪ Ground truth for mass classification

– Malignant cases were confirmed by biopsy surgical pathology

31

Mammography DBT

Breast Cancer Screening w/ DL and DBT

Radiation Oncology

▪ Detection 

– Detection rate: 93%

▪ Segmentation

– Average Dice Coefficient : 81%

▪ Classification 

– Accuracy: 0.79, sensitivity: 0.77, specificity: 0.77, AUC: 0.85

32

Mass Detection, Segmentation, and Classification

Green: Ground truth, Red: Model Output

Radiation Oncology

Cervical Lymph Node Malignancy Identification 

▪ Large uncertainty in delineation of malignant lymph nodes in 

head and neck cancer

▪ AI-based clinical decision support tool for physicians to identify 

malignant lymph nodes using PET/CT

▪ Accuracy: 90%

Normal Suspicious

Involved

© Liyuan Chen and Jing Wang, Ph.D., MAIA Lab, 201733
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❑ The VGG-16 convolutional neural network (CNN) is used as the prediction model

❑ Pre-trained the VGG-16 CNN with a large natural image dataset ImageNet (1.2 million)

❑ 42 cervical cancer patients treated with combined brachytherapy and external beam 

radiotherapy, including 12 patients w/ ≥Grade 2 rectal proctitis (bleeding) 

❑ 58% accuracy for current clinical practice using logistic regression on D0.1/1/2cc rectal doses

❑ 88% accuracy for this work

CNN with Transfer Learning for Rectum Toxicity Prediction 

Zhen, …, Gu, Phys Med Biol. 2;62(21):8246-8263, 2017. 

© Xin Zhen, Ph.D. and Xuejun Gu, Ph.D., MAIA Lab, 2017
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Stratify high-risk NSCLC patients after SBRT

▪ SBRT (Stereotactic Body Radiation Therapy) is the standard of 
care for local control in medically inoperable NSCLC patients:

– High local control rate (>95% in three yeas)

– Relatively high distant failure rate (31% in five years, RTOG 0236)

▪ Stratify patients with high risk of distant failure

– Additional systemic therapy may reduce the risk and improve overall 

survival

– Predict patients with distant failure using machine learning methods

– Accuracy: 88%, Sensitivity: 83%, Specificity: 94%

Zhou, ..., Wang, Phys Med Biol. 62(11):4460-4478, 2017.

35 © Zhiguo Zhou, Ph.d. and Jing Wang, Ph.D., MAIA Lab, 2017

Radiation Oncology

Prediction of Local Persistence/Recurrence after RT

▪ 100 H/N cancer patients with definitive RT

▪ Post-treatment PET/CT images with FDG

36

Imaging Accuracy AUC Sensitivity Specificity

CT 72.0% 64.0% 70.0% 73.3%

PET 64.0% 62.7% 60.0% 67.7%

PET&CT 80.0% 72.7% 70.0% 86.6%
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AI for Treatment Planning

37
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Brain Organ Segmentation in MRI

38

Right Eye Left Eye 

Right Opti-Nerve

Brainstem

Left Opti-Nerve Chiasm

▪ Developed a recursive ensample deep neural network (Unet)

– Organs are segmented recursively based on the difficulty level

– Ensemble of local and global features is used

– Achieved based results in the literature

© Haibin Chen and Xuejun Gu, Ph.D., MAIA Lab, 2018
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Brain Mets Segmentation

© Yan Liu, Ph.D. and Xuejun Gu, Ph.D., MAIA Lab, 201739

Liu, …, Gu, PLoS One. 2017 Oct 6;12(10):e0185844. doi: 10.1371
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2D U-Net, 5 
channels

Input : 512 x 512 x Sl, where Sl is # of slices

Downsample 

Input: 128 x 128 x Sl

Crop 
Volumes 

Coarse organ 
segmentation

Organ Segmentation in Male Pelvis CT Images

3D U-Net 3D U-Net3D U-Net 3D U-Net 3D U-Net

96*96*64 96*96*64 160*160*6496*96*32 96*96*64

Right FEM Left FEM Bladder RectumProstate

40

▪ 2D Unet for organ localization

▪ 3D Unet for refined organ segmentation

▪ Best results in literature

© Anjali Balagopal, MAIA Lab, 2018

Shao Y et 

al. (2014)

Gao Y et 

al. (2012)

Gao Y et 

al. (2016)

Feng Q et 

al. (2010)

Martinez et 

al. (2014)

Ma L et al. 

(2017)

Our 

method

Method
Regression 

forest
Deformable 

model

Multi-task 
random 
forest 

Population-
patient 
based 

learning

Geometrical 
shape model 

Deep 
learning

Deep
learning

Prostate 88% 86% 87% 89% 87% 86.8% 90%

Bladder 86% 91% 92% - 89% - 95%

Rectum 85% 79% 88% - 82% - 84%

Radiation Oncology41

Ground truth

Predicted

Organ Segmentation in Male Pelvis CT Images

© Anjali Balagopal and Steve Jiang, Ph.D., MAIA Lab, 2018

Balagopal,..., Jiang (2018), arXiv:1805.12526. 

Radiation Oncology

3D Dose Prediction Using Deep Learning

▪ Predict 3D radiation dose distribution based on

– Patient’s anatomy and physician’s prescription

▪ Hypothesis: Patients of similar medical conditions should 

have a similar relationship between optimal radiation dose 

and patient anatomy and this relationship can be learned 

with a deep neural network  

Deep Neural 
Network

42

Nguyen, …, Jiang, (2017) arXiv:1709.09233. 

© Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017
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Test Results for A Prostate Case (IMRT)

PTV

Bladder

L Fem
Head

R Fem
Head

Rectum

Body

43 © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017

Radiation Oncology44 © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017

Test Results for A Prostate Case (IMRT)

Radiation Oncology45 © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017
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Prostate VMAT Dose Prediction w/ HD U-Net
Reference

Predicted

© Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018

▪ 83 prostate VMAT patients

▪ 53 for training, 13 for validation, 17 for testing

Radiation Oncology47

Prostate VMAT Dose Prediction w/ HD U-Net

© Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018

Radiation Oncology

H&N VMAT Dose Prediction w/ HD U-NET

48 © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017
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Nguyen, …, Jiang, (2017) arXiv:1805.10397
. 

© Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017

H&N VMAT Dose Prediction w/ HD U-NET

Radiation Oncology50 © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2017

H&N VMAT Dose Prediction w/ HD U-NET

Radiation Oncology51
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© Jianhui Ma and Steve Jiang, Ph.D., MAIA Lab, 2018
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▪ Prostate IMRT Patient

– 97 patients with 10 different plans for each patient

– 77 patients for training while 20 patients for testing

▪ Data preprocessing

– Input 1: PTV, rectum, bladder, body contours

– Input 2: DVH vector for each contour

– Output: 3D dose distribution

52

Individualized 3D Dose Distribution Prediction

© Jianhui Ma and Steve Jiang, Ph.D., MAIA Lab, 2018

Radiation Oncology

Same Patient with Different Input DVH’s

53

▪ Solid lines - desired DVH curves

▪ Dashed lines - DVH curves of the predicted 

dose distributions

P
re

d
ic

te
d

 D
o

s
e

D
V

H
A

n
a

to
m

y

body
bladder
rectum
PTV

© Jianhui Ma and Steve Jiang, Ph.D., MAIA Lab, 2018
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Dose Calculation using Deep Learning

▪ Dose calculation using deep learning directly 
from fluence maps is a complex system

▪ Combining 1st order approximation (ray tracing) 
with deep learning can greatly reduce the 
complexity

54

HD Unet

© Penelope Xing, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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Dose Calculation using Deep Learning

© Penelope Xing, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018

Radiation Oncology

Deep Reinforcement Learning Based HDR Planning 

56

▪ We train a virtual planner network (VPN) to automatically adjust 

weights for optimal HDR plan quality

▪ Use Deep reinforcement learning (DRL) to teach the network to 

tune weights

Radiation Oncology

Deep Reinforcement Learning Based HDR Planning 

57

▪ Testing case 4

▪ Same PTV 

coverage

▪ OARs are 

spared better in 

auto-tuned plan
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Beam Orientation Optimization (BOO) w/ DL

▪ BOO is important for 4Pi RT and CyberKnife

▪ Traditional BOO algorithms

– requires pre-dose calculation for a large number of 

candidate beams

– Difficulty to explore the huge solution space

▪ Goal: develop an AlphaGo type of DL algorithm 

– reinforcement learning (RL) policy network 

– Monte Carlo Tree Search (MCTS)

▪ 1st step: train a supervised learning (SL) policy 

network as a good starting point for RL policy 

network, using column generation (CG) 

58 © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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Training a SL Network using CG

59

CG

Beam angle fitness values

SL 

network

Predicted fitness values

Beamlet

Dose Data

Anatomy

Selected 

Beams

Structure 

weights

Loss

Backpropagate

© Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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SL Policy Network vs Column Generation

60
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© Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018



7/30/2018

21

Radiation Oncology

SL Policy Network vs Column Generation

61

CG Dose

SL Dose

© Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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AI for QA and Error Detection

62

Radiation Oncology

Medical Error Detection and Prevention
▪ After heart disease and cancer, medical errors are the third 

leading cause of death in US
▪ Many quality assurance and error detection processes are 

still done manually by humans
▪ Rule based methods don’t work well due to the increasing 

complexity in patient treatment

▪ SafetyNet
– Run quietly in the background in 

patient electronic medical records and 
treatment management systems

– Automatically detect and highlight any 
anomalies

– Serve as an assistant to clinicians

© Steve Jiang, Ph.D., MAIA Lab, 201763
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▪ About 80% efforts for 

clinical data analysis are 

spent on data cleaning

▪ One typical problem in 

radiation oncology: 

inconsistent organ 

labeling

▪ 17% of misadministration 

caused by modifying 

and/or renaming organs

© Timothy Rozario, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 20181

Authority, P P S Errors in radiation therapy Pennsylvania Patient Safety Advisory 6 3 87-92

Automated Patient Data Cleaning: Organ Labeling

Patient 1 Patient 2 Patient 3

GTV-P 70 PTV HN 66 Gy Old ptv

GTV-N 70 Brainstem Brainstem

CTV-P 59.4 Squeeze Esophagus

R Neck 1b RP 56 TMJR Spinal_cord

R Parotid 56 (11) Parotid SUP R ParotidGland_R

RT PAROTID R66 PTV600_NEW

LT PAROTID Parotid L ParotidGland_L

L Parotid Warm Normal

Larynx Coverage P5940

RT Brachial Plexus SMG L BrachialPlexus_R

LT Brachial Plexus SMG R BrachialPlexus_L

RT Cochlea Cochlea R C5

LT Cochlea Cochlea L T2

PTV 56 L Neck wo 1b ICAL r66

PTV 56 L Neck w 1b NT r1(167)

RT MASSETER Masseter R r2(163)

LT MASSETER Masseter L r3(157)

Radiation Oncology

Three Patient Data Sets

3

▪ 100 prostate patients w/ 5 organs

▪ 54 H&N patients w/ 9 organs

▪ 218 H&N patients w/ 29 organs

© Timothy Rozario, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018

Organ

ID

Organ

Name

Organ

count

0 BrachialPlexus_L 63

1 BrachialPlexus_R 61

2 Brain 51

3 Brainstem 189

4 Cerebellum_L 113

5 Cerebellum_R 105

6 Chiasm 33

7 Cochlea_L 158

8 Cochlea_R 156

9 Constrictors 149

10 Epiglottis 33

11 Esophagus 143

12 Eye_L 34

13 Eye_R 34

14 Larynx 166

Organ

ID

Organ

Name

Organ

count

15 Lens_L 22

16 Lens_R 24

17 Lips 24

18 Mandible 160

19 Masseter_L 108

20 Masseter_R 106

21 OralCavity 167

22 Parotid_L 180

23 Parotid_R 129

24 Skin 26

25 SMG_L 92

26 SMG_R 101

27 SpinalCord 205

Radiation Oncology

Model: Deep 3D ResNeXt-44

5

Stage Output ResNeXt-44

conv1 96X96X48 32, 5X5X5, 2

conv2 48X48X24 3X3X3 max pool, 2

1X1X1, 64

3X3X3, 64, C=32 X3

1X1X1, 128

conv3 24X24X12 1X1X1, 128

3X3X3, 128, C=32      X4

1X1X1, 256

conv4 12X12X6 1X1X1, 256

3X3X3, 256, C=32      X4

1X1X1, 512

conv5 6X6X3 1X1X1, 512

3X3X3, 512, C=32      X3

1X1X1, 1024

fc 1X1X1 global average pool

29-d , softmax

© Timothy Rozario, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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Testing Results

7

▪ 100 prostate patients w/ 5 organs

- 80% for training and 20% for testing

- 100% accuracy

▪ 54 H&N patients w/ 9 organs

- 80% for training and 20% for testing

- 100% accuracy

▪ 218 H&N patients w/ 29 organs

- 80% for training and 20% for testing

- 97% accuracy

© Timothy Rozario, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018
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Wearable Sensors and Smart Clinic

68

Radiation Oncology

Wearable Sensors and Smart Clinic
▪ Tracking patients, clinical staff, and assets to improve 

efficiency and safety

▪ Measuring patient vital signs etc

▪ Based on Bluetooth Low Energy (BLE) 

69

Luo, ..., Jiang, Work in progress, 2018. (MAIA Lab)

© Steve Jiang, Ph.D., MAIA Lab, 2018
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Ex 1.3               Ex 1.4                    Ex1.5                    Ex 1.6

Ex 1.9                  Ex 1.10                Ex 1.11               Ex 1.12Ex 1.7               Ex 1.8

Ex 1.1               Ex 1.2

© Zohaib Iqbal, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 201770
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Moved in New Rad Onc Building in April 2017

© Steve Jiang, Ph.D., MAIA Lab, 2017

Radiation Oncology72

First Floor

DOT Exam

BrachyProcedure/Imaging

© Steve Jiang, Ph.D., MAIA Lab, 2017
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New Pt. Clinic

Open Office Trainee

Residents

Disease Oriented Teams

Second Floor

73 © Steve Jiang, Ph.D., MAIA Lab, 2017
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Moving Forward

▪ We are designing a new building

– Another 7 vaults

– The whole building will be an AI laboratory 

▪ We are hiring

– Director of clinical physics 

– Junior clinical faculty (assistant professor level)

– Junior research faculty (instructor level)

– Postdoctoral fellows

– Residents

74
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