

Barbara Crittenden Professor in Cancer Research Director, Medical Artificial Intelligence and Automation Lab

Vice Chair, Department of Radiation Oncology

UT Southwestern Medical Center

What is Artificial Intelligence (AI)

- Many definitions
- The one I like: AI makes it possible for machines to learn from experience, adjust to new inputs, and perform human-like tasks
- Learn from human
- Learn by itself
- Do human's job

UTSou

Radiation Oncology

Ph.D., MAIA Lab, 2018

AI Is Changing The World

- Self driving cars
- Computer vision
- Healthcare
- Finance and economics
-

e Jiang, Ph.D., M

A Lab. 2018

Supervised Learning – From A to B

AlphaGo Master

- **5/2017**
- AlphaGo vs Ke Jie 9p (currently No.1 Go player in the world)
- The final battle between man and machine in the board game
- Result: 3 to 0
- AlphaGo: no more competitive Go playing

nature ns & Jobs 🛛 🤇 Art s Article NATURE | ARTICLE < 8 Editor's summary لعربية 日本語要約 To beat world champions at the game of Go, computer program AlphaGo has relied largel supervised learning from millions of human e Mastering the game of Go without human roves. David Sil knowledge David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonogiou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Silfe, George van den Driessche, Thore Graepel & Demis Associated links News & Views ing to play Go from Hassabis Affiliations | Contributions | Corresponding author Nature 550, 354–359 (19 October 2017) | doi:10.1038/nature24270 Received 07 April 2017 | Accepted 13 September 2017 | Published onli AlphaGo Zero 🕙 PDF 🔮 Citation 🔍 Rights & permissions 📓 Article Radiation Oncology

Deep Q-network (DQN) playing Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Radiation Oncology Ø Steve Jiang, Ph.D., MAIA Lab, 2017

UTSout

Artificial General Intelligence

- Systems that can learn to solve any complex problem without needing to be taught how
- Agents should not be pre-programmed, but rather, able to learn automatically from their raw inputs and reward signals from the environment

'AI IS THE NEW ELECTRICITY'

Radiation Oncology

"Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don't think AI will transform in the next several years."

Andrew Ng Former chief scientist at Baidu. Co

Narrow AI = Electricity; AGI = nothing we have seen before! - Steve Jiang

11 Radiation Oncology © St

, 2018

UTSout

UTSout

Artificial Intelligence in Medicine (AIM)

- Medical imaging and diagnostics
- Clinical decision support
- Treatment outcome prediction
- Precision and individualized medicine
- Prediction of chronic disease trajectories
- Healthcare delivery in resource limited regions
- Care delivery optimization, automation, safety
- Computational drug discovery and development
- Medical error detection and prevention
- Assisted care and chronic disease management with wearable sensors

12 Radiation Oncology © Steve Jiang, Ph.D., MAIA Lab, 20

Al in Radiation Oncology

- Al may greatly improve the treat outcome and reduce toxicity by providing
- More precise cancer detection, diagnosis, staging etc
- More personalized and precision treatment strategy
- More accurate target delineation and organ segmentation
- Better and faster treatment planning and treatment delivery
- More convenient, frequent, and accurate patient follow up
- AI may greatly improve patient safety by
 - Automatically detecting and preventing medical errors
 - Using wearable sensors and RTLS technologies
- AI may greatly reduce disparity by
- Transferring the high quality care from major academic centers to under-served patients via well trained AI software tools

Radiation Oncology	© Steve Jiang, Ph.D., MAIA Lab, 2017	UT Southwestern Medical Center

UT Southwestern MAIA Lab Medical Artificial Intelligence and Automation

- What we are doing for AI in RO at UTSW MAIA Lab
- AAPM presentations

14 Radiation Oncology © Steve Jiang, Ph.D., MAIA Lab, 2017 UTSouthwess Medical

Al for Medical Imaging

CT Recon w/ Human-Like Auto Parameter Adjusting

<complex-block><complex-block><list-item><list-item><list-item> <u

Testing Results on Simulation Data

-

Testing Results on Experimental Data

CT Synthetization from MRI

- <u>Unpaired</u> CT and MR images from 77 brain patients who underwent brain tumor radiotherapy
- CT images were acquired with a 512x512 matrix and voxel size 0.68mm×0.68mm×1.50mm
- MR images were acquired at 1.5T using a post-gadolinium 2D T1weighted spin echo sequence with TE/TR = 15/3500 ms

DCGAN - Deep convolutional generative adversarial network

Radiation Oncology

UT Southwest Medical Co

CBCT to CT Translation using CycleGAN

CBCT to CT Translation using CycleGAN

Training and validation data

- -13 H&N patients with unpaired CBCT and CT images
- -80 slices/patient, totally 1360 slices
- -960 slices for training, 80 slices for validation

Testing data

- -4 patients with CBCT and deformed CT images
- -Totally 320 slices

23 Radiation Oncology

UT Southweste Medical Cer

CBCT to CT Translation using CycleGAN

- SCT is accurate in both spatial and intensity domains
 Accurate in CT numbers like CT
 - -Accurate in anatomic structures like CBCT

From 4DCT Image to Ventilation Image

 Generating functional lung ventilation image from anatomical 4D CT images using CNN

Radiation Oncology © Yuncheng Zhong, Ph.D. and Jing Wang, Ph.D., MAIA Lab, 2018 UTSouthwee Medical

Super-Resolution of MR Spectroscopic Imaging (MRSI)

Hypothesis:

Low resolution MRSI plus T1 weighted MRI should have sufficient information to reconstruct high resolution MRSI

Super-Resolution MRSI: Testing Results (Simulation)

Super-Resolution MRSI: Testing Results (In Vivo)

AI for Diagnosis and Prognosis

UTSouth

Breast Cancer Screening w/ DL and DBT

- Digital Breast Tomosynthesis (DBT): better accuracy than mammography especially for dense breasts
- 496 cases with mass-like lesions
- Ground truth for mass detection/segmentation
- 3 radiologists, each with > 5 years experience in breast screening
- Ground truth for mass classification
- Malignant cases were confirmed by biopsy surgical pathology

Mass Detection, Segmentation, and Classification

- Detection
- Detection rate: 93%
- Segmentation
- Average Dice Coefficient : 81%
- Classification

Cervical Lymph Node Malignancy Identification

- Large uncertainty in delineation of malignant lymph nodes in head and neck cancer
- Al-based clinical decision support tool for physicians to identify malignant lymph nodes using PET/CT
- ε. Accuracy: 90%

CNN with Transfer Learning for Rectum Toxicity Prediction

- The VGG-16 convolutional neural network (CNN) is used as the prediction model
- Pre-trained the VGG-16 CNN with a large natural image dataset ImageNet (1.2 million)
- lacksquare 42 cervical cancer patients treated with combined brachytherapy and external beam
- radiotherapy, including 12 patients w/ ≥Grade 2 rectal proctitis (bleeding)
- □ 58% accuracy for current clinical practice using logistic regression on D0.1/1/2cc rectal doses □ 88% accuracy for this work

Stratify high-risk NSCLC patients after SBRT

- SBRT (Stereotactic Body Radiation Therapy) is the standard of care for local control in medically inoperable NSCLC patients: - High local control rate (>95% in three yeas)
- Relatively high distant failure rate (31% in five years, RTOG 0236)
- · Stratify patients with high risk of distant failure
 - Additional systemic therapy may reduce the risk and improve overall survival
 - Predict patients with distant failure using machine learning methods
 - Accuracy: 88%, Sensitivity: 83%, Specificity: 94%

Zhou, ..., Wang, Phys Med Biol. 62(11):4460-4478, 2017.

UTSo Radiation Oncology © Zhiguo Zhou, Ph.d. and Jing Wang, Ph.D., MAIA Lab, 2017

Prediction of Local Persistence/Recurrence after RT

- 100 H/N cancer patients with definitive RT
- Post-treatment PET/CT images with FDG

Imaging	Accuracy	AUC	Sensitivity	Specificity
СТ	72.0%	64.0%	70.0%	73.3%
PET	64.0%	62.7%	60.0%	67.7%
PET&CT	80.0%	72.7%	70.0%	86.6%

UTSout

Radiation Oncology

12

AI for Treatment Planning

Radiation Oncology	UT Southwestern Medical Center

Brain Organ Segmentation in MRI

- Developed a recursive ensample deep neural network (Unet)
 - Organs are segmented recursively based on the difficulty level
- Ensemble of local and global features is used
- Achieved based results in the literature

		5	Rate	Eye All and a set of the set of t	Left Eye	Sprintle	
Metrics	Methods	R_Eye	L_Eye	BS	R_ON	L_ON	Chiasm
	Rough	89.4±3.1	86.4±3.9	83.2±4.7	71.4±15.0	69.3±15.5	54.8±11.6
DSC(%)	Fine	94.3±2.0	94.3±1.3	90.1±3.4	76.5±11.1	72.5±12.6	58.8±12.3
	Ensemble	94.9±1.6	94.9±1.3	90.3±3.2	79.6±9.0	76.9±11.4	68.3 ± 8.0
	Rough	1.8 ± 0.4	2.1 ± 0.4	4.0 ± 1.2	$2.7{\pm}1.4$	3.5±2.7	4.0±1.5
	Fine	1.3±0.4	1.3 ± 0.4	3.0±1.2	3.1±3.2	3.2±2.1	3.4±1.3
HD(mm)							

38 Radiation Oncology © Haibin Chen and Xuejun Gu, Ph.D., MAIA Lab, 2018 UT Southwestern Medical Center

Brain Mets Segmentation

 2D U 3D U Best 	Inet for orga Dinet for refir results in lit	Cause organ segmentation 20 U.Net, 5 channels bownscample n localizatio need organ seg erature	n gmentation	Stripting FEM	64 96*96*92 1 10 U.Net 30 U.Net off FEM Prostat	60°160°64 30 L-Net Bladder	A DO DANET
	Shao Y et al. (2014)	Gao Y et al. (2012)	Gao Y et al. (2016)	Feng Q et al. (2010)	Martinez et al. (2014)	Ma L et al. (2017)	Our method
Method	Regression forest	Deformable model	Multi-task random forest	Population- patient based learning	Geometrical shape model	Deep learning	Deep learning
Prostate	88%	86%	87%	89%	87%	86.8%	90%
Bladder	86%	91%	92%	-	89%	-	95%
Rectum	85%	79%	88%	_	82%		84%

Organ Segmentation in Male Pelvis CT Images

Organ Segmentation in Male Pelvis CT Images

3D Dose Prediction Using Deep Learning

- Predict 3D radiation dose distribution based on Patient's anatomy and physician's prescription
- <u>Hypothesis</u>: Patients of similar medical conditions should have a similar relationship between optimal radiation dose and patient anatomy and this relationship can be learned with a deep neural network

Test Results for A Prostate Case (IMRT)

Test Results for A Prostate Case (IMRT)

Prostate VMAT Dose Prediction w/ HD U-Net

Prostate VMAT Dose Prediction w/ HD U-Net

H&N VMAT Dose Prediction w/ HD U-NET

H&N VMAT Dose Prediction w/ HD U-NET

H&N VMAT Dose Prediction w/ HD U-NET

Individualized 3D Dose Distribution Prediction

Individualized 3D Dose Distribution Prediction

Prostate IMRT Patient

- 97 patients with 10 different plans for each patient

- 77 patients for training while 20 patients for testing
- Data preprocessing
- Input 1: PTV, rectum, bladder, body contours
- Input 2: DVH vector for each contour
- Output: 3D dose distribution

	Radiation Oncology	Ø Jianhui Ma and Steve Jiang, Ph.D., MAIA Lab, 2018	UT Southwestern Medical Center	
--	--------------------	---	-----------------------------------	--

Same Patient with Different Input DVH's

Dose Calculation using Deep Learning

- Dose calculation using deep learning directly from fluence maps is a complex system
- Combining 1st order approximation (ray tracing) with deep learning can greatly reduce the complexity

Dose Calculation using Deep Learning

Deep Reinforcement Learning Based HDR Planning

- We train a virtual planner network (VPN) to automatically adjust weights for optimal HDR plan quality
- Use Deep reinforcement learning (DRL) to teach the network to tune weights

Deep Reinforcement Learning Based HDR Planning

- Testing case 4Same PTV
- coverage • OARs are
- spared better in auto-tuned plan

Beam Orientation Optimization (BOO) w/ DL

- BOO is important for 4Pi RT and CyberKnife
- Traditional BOO algorithms
 - requires pre-dose calculation for a large number of candidate beams
 - Difficulty to explore the huge solution space
- Goal: develop an AlphaGo type of DL algorithm
 - reinforcement learning (RL) policy network
 - Monte Carlo Tree Search (MCTS)
- 1st step: train a supervised learning (SL) policy network as a good starting point for RL policy network, using column generation (CG)

58 Radiation Oncology © Dan Nguyen, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018 UT Southwestern Medical Center

Training a SL Network using CG

SL Policy Network vs Column Generation

SL Policy Network vs Column Generation

AI for QA and Error Detection

Radiation Oncology

UTSout

Medical Error Detection and Prevention

- After heart disease and cancer, medical errors are the third leading cause of death in US
- Many quality assurance and error detection processes are still done manually by humans
- Rule based methods don't work well due to the increasing complexity in patient treatment 100,000 200,000 300,000 400,000 500,000 40
- SafetyNet

anomalies

- Run quietly in the background in patient electronic medical records and treatment management systems

Automatically detect and highlight any

Automated Patient Data Cleaning: Organ Labeling

Patient

- About 80% efforts for clinical data analysis are spent on data cleaning
- One typical problem in radiation oncology: inconsistent organ labeling

GTV-N 70	Brainstem	Brainstern
CTV-P 59.4	Squeeze	Esophagus
R Neck 1b RP 56	TMJR	Spinal_cord
R Parotid 56 (11)	Parotid SUP R	ParotidGland_R
RT PAROTID	R66	PTV600_NEW
LT PAROTID	Parotid L	ParotidGland_L
L Parotid	Warm	Normal
Larynx	Coverage	P5940
RT Brachial Plexus	SMG L	BrachialPlexus_R
LT Brachial Plexus	SMG R	BrachialPlexus_L
RT Cochlea	Cochlea R	C5
LT Cochlea	Cochlea L	T2
PTV 56 L Neck wo 1b	ICAL	r66
PTV 56 L Neck w 1b	NT	r1(167)
RT MASSETER	Masseter R	r2(163)

Patient 2

 17% of misadministration caused by modifying and/or renaming organs

Radiation Oncology	O Timothy Barasia Dh D, and Grow Jiana Dh D. MAIA Jab 2019	UTSouthwe
uthority, P P S Errors in radiati	on therapy Pennsylvania Patient Safety Advisory 6 3 87-92	

Three Patient Data Sets

- 100 prostate patients w/ 5 organs
- 54 H&N patients w/ 9 organs
- 218 H&N patients w/ 29 organs

Organ	Organ	Organ	Organ	Organ	Organ
ID	Name	count		Name	count
0	BrachialPlexus_L	63	15	Lens_L	22
1	BrachialPlexus_R	61	16	Lens_R	24
2	Brain	51	17	Lips	24
3	Brainstem	189	18	Mandible	160
4	Cerebellum_L	113	19	Masseter_L	108
5	Cerebellum_R	105	20	Masseter R	106
6	Chiasm	33		0	
7	Cochlea_L	158	21	OraiCavity	167
8	Cochlea_R	156	22	Parotid_L	180
9	Constrictors	149	23	Parotid_R	129
10	Epiglottis	33	24	Skin	26
11	Esophagus	143			
12	Eye_L	34	25	SMG_L	92
13	Eye_R	34	26	SMG_R	101
14	Larynx	166	27	SpinalCord	205
adiation C	Oncology (D Timothy Ro	zario, Ph.D. and Steve	: Jiang, Ph.D., MA	IA Lab, 2018

Model: Deep 3D ResNeXt-44

Stage	Output	ResNeXt-44
conv1	96X96X48	32, 5X5X5, 2
conv2	48X48X24	3X3X3 max pool, 2
		1X1X1, 64 3X3X3, 64, C=32 1X1X1, 128 X3
conv3	24X24X12	1X1X1, 128 3X3X3, 128, C=32 1X1X1, 256 X4
conv4	12X12X6	1X1X1, 256 3X3X3, 256, C=32 1X1X1, 512 X4
conv5	6X6X3	1X1X1, 512 3X3X3, 512, C=32 1X1X1, 1024 X3
fc	1X1X1	global average pool 29-d , softmax
Radiation Oncology	© Timothy Rozario, Ph.D. and St	eve Jiang, Ph.D., MAIA Lab, 2018

Testing Results

- 100 prostate patients w/ 5 organs
 - 80% for training and 20% for testing
 - 100% accuracy
- 54 H&N patients w/ 9 organs
 - 80% for training and 20% for testing
 - 100% accuracy
- 218 H&N patients w/ 29 organs
 - 80% for training and 20% for testing
 - 97% accuracy

Radiation Oncology © Timothy Rozario, Ph.D. and Steve Jiang, Ph.D., MAIA Lab, 2018 UT Southwestern Medical Center

Wearable Sensors and Smart Clinic

68 Radiation Oncology UTSouthwest Mediad Dir

Moved in New Rad Onc Building in April 2017

First Floor

Moving Forward

- We are designing a new building
- Another 7 vaults
- The whole building will be an AI laboratory

We are hiring

- Director of clinical physics
- Junior clinical faculty (assistant professor level)
- Junior research faculty (instructor level)
- Postdoctoral fellows
- Residents

74 Radiation Oncology

UT Southweste Medical Cer

Acknowledgement

