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Abstract 
Automatization of the diagnosis of any kind of disease is of great importance and its gaining 

speed as more and more deep learning solutions are applied to different problems. One of such 

computer-aided systems could be a decision support tool able to accurately differentiate 

between different types of breast cancer histological images – normal tissue or carcinoma 

(benign, in situ or invasive). In this paper authors present a deep learning solution, based on 

convolutional capsule network, for classification of four types of images of breast tissue biopsy 

when hematoxylin and eosin staining is applied. The cross-validation accuracy, averaged over 

four classes, was achieved to be 87 % with equally high sensitivity. 

Introduction 
 

Breast cancer is one of the most frequent types diagnosed for women – it accounts for 30 % of 

all new cancer diagnoses in women [1]. However, it is a multifaceted disease with varying 

biological as well as clinical behaviors [2]. This heterogeneity resulted to an endeavor to 

classify this cancer into meaningful classes [3]. One may consider histological types, which 

refers to the growth patterns of the tumors, or molecular subtypes. 

Histological grading is particularly important, because if the initial check-up for breast cancer 

(e.g. by palpation, mammography, ultrasound) is positive the breast tissue biopsies enables 

histological assessment of the severity of the cancer. However, histological analysis requires 

experience and extensive knowledge of the cytologist. Therefore, computer-aided decision 

systems would be of great help in detecting abnormalities and assessing their severity. 

Related work 
Advances of past decade in the deep learning techniques as well as computing power enabled 

systems for automatic classification of images: whether it is classification of many images 

found on internet of thousands general categories (see ImageNet competitions), to 

dermatologist-level skin cancer classification [4], to animal recognition in their habitats [5]. 

An attempt to apply deep learning techniques for breast cancer histological images has already 

been made – convolutional neural networks proved to be of great use in this task [6] allowing 

to achieve accuracies of 77.8 % for four class (normal, benign, in situ and invasive) and 83.3 

% for carcinoma vs. non-carcinoma classification task. The accuracies achieved by 

convolutional neural network are truly high, considering that it requires no elaborate feature 

extraction methods before training the classifier – an advantage for which deep learning 

algorithms are often prized.  

There are several other important examples of breast histological image analysis. Kowat et al. 

[10] used K-means, fuzzy C-means, competitive learning neural networks and Gaussian 

mixture models for nuclei segmentation and the results of this analysis were used in a medical 

decision support system for breast cancer diagnosis, where the cases were classified as benign 

or malignant (similar works were done by Filipczuk et al. [12] and George et al. [12]). Brooks 

et al. [13] considered a problem of classifying 361 images as normal, in situ and benign by 

support vector machines and achieved ~ 93 % accuracies for all classes. Zhang et al. [14] 



ensembles of SVM and neural networks to achieve 97 % classification accuracy for a 3-class 

(normal, benign and in situ) problem.  

Above references are great examples of what machine learning/deep learning can achieve. In 

this paper a 4-class problem is considered: normal, benign, in situ and invasive types of 

histological images. In Materials and methods section, we briefly discuss the data and 

preprocessing steps together with more extensive presentation of Convolutional capsule 

networks (CapsNet) – a new type of networks [7]. 

Materials and methods 
 

Dataset 
The dataset1 is composed of hematoxylin and eosin (H&E) stained breast 

histology microscopy images. In total 400 images (in equal class proportions) was used. All 

images were of equal dimensions (2048 x 1536), with 0.42 μm x 0.42 μm pixel size. Each 

image is labelled with one of four classes: i) normal tissue, ii) benign lesion, iii) in situ 

carcinoma and iv) invasive carcinoma. 

 

Preprocessing and data augmentation 
The images warried in the shading of the coloring probably due to slightly varying conditions 

and protocols of staining (see Figure 1). Therefore, color transfer by Reinhard’s method [9] 

was performed. In addition, to increase the number of trainable samples, three rotations of 

images were used: by 0 degrees (i.e. no rotation), by 90 and by 180 degrees. After an image 

rotation, 100 random patches of size 256 x 256 were cut. Hence, 300 patches were extracted 

from one image (3 rotations x 100 random patches).  

 

 
Figure 1 Examples of different stain shades. 

 

Because patches were generated randomly, no knowledge about the degree of overlap is 

retained. It is not clear whether such random cutting results to better performance. This aspect 

was not investigated any further. 

 

Capsule Networks 
Convolutional neural networks (CNN) suffer from several conceptual drawbacks: (1) max-

pooling operation throws away information about the position of some entity that the network 

tries to recognize and (2) convolutional neural networks do not take into account many spatial 

relations between simpler objects. On the other hand, CNNs with max-pooling layers resulted 

                                                 
1 Additional test dataset was provided latter after the paper submission deadline.  



to the rapid development of deep learning field. So, it was probably a matter of time till the 

method with CNN capabilities and without its disadvantages was developed - capsule network 

with dynamic routing [7]. The concept of capsules is not anything new, because G. E. Hinton, 

major figure in deep learning field, has been thinking about it for a while (see for example [8], 

although the idea goes back several decades ago, according to G. E. Hinton himself). It just 

never worked before, up until dynamic routing algorithm was proposed [7]. In what follows, 

the concept of Convolutional capsule network (CapsNet) will be presented in more details. 

First of all, a capsule is a group of neurons whose outputs are interpreted as various properties 

of the same object. Each capsule has two ingredients: a pose matrix, and an activation 

probability. These are like activities of a standard neural network. The length of the output 

vector of a capsule can be interpreted as the probability that the entity represented by the 

capsule is present in the current input. There can be several layers of capsules. In our 

architecture, we used a layer of primary capsules (reshaped and squashed output of the last 

convolutional layer) and a layer of CancerCaps (i.e. capsules representing 4 types of images: 

normal/noncancerous, benign, in-situ and invasive). 

 
Figure 2 Architecture of the Convolutional capsule network used to classify breast cancer 

histological images. 

 

Table 1 Considered Convolutional capsule network architecture. 

 Layer type Maps and neurons/capsules Filter size/Strides 

or 

Capsule dimensions 

0 Input 3M x 512N x 512 N 1 x 1 

1 Convolutional 64M x 255N x 255 N 4 x 4/2 

2 Convolutional 128M x 126N x 126 N 4 x 4/2 

3 Convolutional 256M x 61N x 61 N 6 x 6/2 

4 Convolutional 256M x 28N x 28 N 6 x 6/2 

5 Convolutional 256M x 11N x 11 N 8 x 8/2 

6 Primary capsule layer 3872 C 8 

7 CancerCaps layer 4 C 16 

 

 

Before the layer of primary capsules, one can have as many convolutional layers as it fits. Only, 

the max-pool layers are missing; instead, to reduce the dimensionality, one used convolution 



with strides larger than 1 (if the stride is 2, then dimension are reduced by the factor of 2, etc.). 

The output of CancerCaps are used to make the decision about the class of the input image. An 

entire architecture of the network used in this work is presented in Figure 2 and Table 1 contains 

information about the dimensions. The total number of trainable parameters was 9850816. 

Each capsule in primary capsule layer is connected to every other capsule in CancerCaps layer. 

However, an algorithm, called routing-by-agreement, enables better learning as compared to 

the max-pooling routing. Routing-by-agreement is sort of a feedback algorithm which 

increases the contribution of those capsules which agree most with the parent output. Thus, 

even more strengthening its contribution. 

The above-mentioned squashing function is a multidimensional alternative to the one-

dimensional activation functions in regular neural networks (e.g. hyperbolic tangent, etc.) and 

is calculated as follows: 
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where 𝒗𝑗 is the vector output of capsule j and  𝒔𝑗 is its total input. 

Another novelty introduced together with capsule networks was the use of margin-loss. For 

each cancer capsule, k the incurred loss is as follows: 

𝐿𝑘 = 𝑇𝑘  max(0, 𝑚+ − ‖𝒗𝑘‖)2 + 𝜆(1 − 𝑇𝑘) max(0, ‖𝒗𝑘‖ − 𝑚−)2, 
where 𝑇𝑘 = 1 if and only if an image of class k is present and 𝑚+ = 0.9 and 𝑚− = 0.1. We 

use 𝜆 = 0.5. 

Results 
5-fold cross-validation was used with 25 % on whole images leaving for testing and the rest 75 

% were used for network training. Adam optimizer [16] was used with parameter 0.0001 to 

train the entire network. 

Image-wise classification 
Image patches, due to the significantly smaller sizes than original images, were not all equally 

informative. Consider example in Figure 3. The small patch in Figure 3 (inside the black box) 

contains no information whether the entire image is taken from invasive carcinoma tissue or 

not. In other words, information contained in one large image is dispersed over the larger 

number of patches, some of which may not be of any value at all.  

 

 
Figure 3 Original image of invasive carcinoma and its patch (bounded by a black box) 

 

Such information dispersion results to the noisy learning (i.e. loss function is noisy) and it is 

possible to quickly over-train the network with those uninformative patches. To avoid this the 

training was stopped when loss-function (computed on training samples) was less than 0.1. 



Only image-wise prediction was considered, i.e. accuracies were analyzed only for entire 

images and not for separate patches. The majority voting was used to decide on the label of the 

image. 

Cross-validation procedure results were as in Table 2. The overall accuracy, as obtained from 

cross validation is 87%. 

Table 2 The confusion matrix for the cross-validation (mean values, %). 

True vs. Predicted Benign In situ Invasive Normal 

Benign 87 6 4 6 

In situ 6 84 5 3 

Invasive 5 5 88 1 

Normal 2 5 4 90 

 

The results on the test set of the competition was 72 %. However, some errors were made 

during the network training phase and therefore the results on the test set does not correspond 

to the properly trained network. At the time of submission of the paper competition organizers 

did not released the labels of the test set and the true results are not known (cross validation 

above corresponds to the correctly trained network). 

Even though the cross-validation accuracies are high, it is clear that the network has difficulty 

to differentiate between Benign and Normal tissues. In addition, invasive type can be mixed 

up with benign and this type of mistakes can have severe consequences, as the invasive type 

of breast cancer requires immediate treatment. 

 

Feature visualization 
It is difficult to give any meaning to the different layers of the network and therefore it is not 

possible to understand clearly what gives the network the ability to discriminate between 

different classes. However, as exemplified in the Figure 4 and Figure 5, at least first 

convolutional layers try to recognize different parts of the histological image – nuclei, 

cytoplasm, and other objects. Going deeper into a network, the interpretability is lost due to 

the complexity of the network and calculations that it performs.  

 

 
Figure 4 Example of first convolutional layer features where other that nuclei and cytoplasm 

areas are enhanced 

 



 
Figure 5 Example of first convolutional layer features, where nuclei are enhanced. 

It is also interesting to look at the visualization of the output of CancerCaps layer (i.e. layer 

consisting of 4 cancer capsules of 16 dimensions). For this purpose, t-SNE method [15], a 

parametric embedding technique for dimensionality reduction, was applied. 

 
Figure 6 t-SNE visualization of CancerCaps layer features. 

 

In Figure 6 a visualization of how different four classes are. All image classes overlap 

significantly. But this is expected because, as was noted previously, an entire histology image 

was divided into much smaller patches, many of which carried no information about the 

specific class or that information was misleading. 

 

Conclusions and further discussion 
A convolutional capsule network was presented to solve the classification task of breast cancer 

histological images. The cross-validation accuracy was 87 % for the benign carcinoma tissue 



images, 84 % for the in situ carcinoma, 88 % for invasive type and 89 % for normal tissue 

images. As of now, testing phase results remain unknown and will be added shortly. 

It is unknown whether different variations of network architecture would’ve resulted to similar 

or better results. In the future, more in depth analysis will be performed to optimize the 

architecture: number of convolutional layers, dimensions of capsules in primary and 

CancerCaps layers. Also, no regularization was considered, although decoding part of 

autoencoder after capsule layers was suggested to have a positive impact on the learning and 

generalization. However, cross-validation results are very promising, hinting that capsule 

networks are of equal or even better capabilities as compared to the classical convolutional 

neural networks. 

It is probably safe to speculate, that a computer-aided decision system, which would help to 

diagnose breast cancer faster and more accurately, can be envisaged in a near future. 
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