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Abstract. Today, diagnosis and monitoring of retina diseases related
to pathologies such as accumulated fluid can be performed using opti-
cal coherence tomography (OCT). OCT acquires a series of 2D slices
(Bscans). This work presents a fully-automated method to segment and
detect three types of fluid including sub-retinal fluid (SRF), intra-retinal
fluid (IRF) and pigment epithelium detachment (PED) in OCT Bscans
of subjects with age-related macular degeneration (AMD) and retinal
vein occlusion (RVO) or diabetic retinopathy. Segmentation method is
based on graph shortest path algorithms and convolutional neural net-
work (CNN). Proposed method achieves an average dice coefficient of
76.44%, 92.25% and 82.14% in Cirrus, Spectralis and Topcon datasets,
respectively.
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1 Introduction

Optical coherence tomography (OCT) is a non-invasive and non-contact imaging
method with extensive clinical use in ophthalmology. It uses optical technology
to create tomographic images with variable scan rates and resolutions, and is
used to create cross-sectional images of ocular tissues, including the retina [1].
It is extensively used clinically for the diagnosis and follow-up of patients with
retinal vein occlusion (RVO) and age-related macular degeneration (AMD) [2].

The macula is the central part of the retina and is critical for good vision.
RVO, manifested by fluid cysts within the retina and retinal thickening, is caused
by fluid leakage from damaged macular blood vessels. This causes vision loss and
is the most common cause of vision loss among working-aged adults in the United
States. OCT images allow very sensitive detection and quantitative assessment
of these fluid cysts and retinal thickening [3, 5, 7]. AMD is characterized by the
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growth of abnormal blood vessels from the choroidal vasculature, and the re-
sultant fluid leakage into the intra-retinal, sub-retinal, and sub-retinal pigment
epithelium (RPE) spaces. The standard treatment for this condition is guided
by the presence and quantity of this fluid [4, 6]. The fluid quantity cannot be
routinely measured in clinical practice because commercial algorithms do not
directly detect fluid. Some state of the art methods for fluid segmentation in
AMD and RVO subjects were proposed in [2, 10, 8, 9, 12, 11].

In this work, a fully-automated method is presented for the segmentation of
three types of fluid including intra-retinal fluid (IRF), sub-retinal fluid (SRF)
and pigment epithelial detachment (PED). In the first step, inner limiting mem-
brane (ILM) and retinal pigment epithelium (RPE) layers are segmented by
graph shortest path methods. Then, the regions between these layers are input
to a convolutional neural network (CNN). The CNN is trained for binary classi-
fication of pixels between ILM and RPE. In this application, both IRF and SRF
fluids are considered as object and tissue is considered as background. Finally,
PED is segmented by the proposed method based on layer segmentation and
layer flattening.

The rest of this paper is organized as follows. Section 2 presents the proposed
methodology with subsections including layer segmentation, PED segmentation
with layer flattening, IRF and SRF segmentation with CNN, and fluid detec-
tion. Experimental results are presented in Section 3. Segmentation results are
presented in Sections 4. Finally, conclusion is described in Sections 5.

2 Methods

The main contribution of this work is to segment and detect IRF, SRF and
PED. IRF and SRF are located between ILM and RPE layers while PED is
underneath RPE. The important property of IRF and SRF is that these fluid
types stem from abnormal blood vessels leakage from the choroidal vasculature,
and the resultant dark region. In PED fluid may or may not exist. In patients
with early AMD, PED is the result of RPE elevation and fluid does not exist
while in severe AMD RPE is elevated by fluid regions. The proposed approaches
for fluid segmentation are in agreement with the mentioned properties of fluid
regions. For IRF and SRF, a supervised method based on CNN is trained. PED
is computed by the flattening of RPE which means that the elevated RPE is
flattened and then the elevation of RPE is computed. It is not affected by the
texture of PED. Therefore, both non-fluid PED and fluid PED can be segmented
by this method.

2.1 Layer Segmentation

The first step of the proposed method is the segmentation of ILM and RPE
layers as a ROI for IRF and SRF regions. This step is very important due to
two aspects. First, the background region is very similar to fluid/cyst regions
in both brightness and texture. This can easily mislead the CNN segmentation
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method since this method is based on brightness of neighboring pixels of target
pixel. The second reason for ROI segmentation is speeding up since the ROI is
processed instead of the whole image. Therefore, ROI is presented in the train
and test phases of CNN. For layer segmentation, the graph is constructed from
each OCT Bscan by mapping each pixel in the image to one node in a graph. We
only consider the local relationship between pixels. Therefore, by considering the
local relationship for 8 neighbors of each pixel, the 8-regular graph is constructed.
For ILM segmentation, the image is first filtered with a vertical gradient filter
and then the weight computation between any two arbitrary pixels (a1, b1) and
(a2, b2) is defined by (1):

(1)W ((a1, b1), (a2, b2)) = 4 ∗MaxG− V erGrad(a1, b1)

− V erGrad(a2, b2) + 2 ∗mean(R)

where MaxG is the maximum gray level of the image and R is a set of R
pixels above (a1, b1). In this work, R is set to 10 based on experiments. The
procedure for the segmentation of RPE is that the vertical gradient is inversed
and R corresponds to a set of D pixels under (a1, b1). Weight computation
between any two arbitrary pixels is defined by (2):

W ((a1, b1), (a2, b2)) = 4∗MaxG−V erGrad(a1, b1)−V erGrad(a2, b2)−mean(R)

(2)

2.2 PED segmentation with Layer flattening

As it was mentioned before, PED can not be segmented based on pixel intensities
since in early AMD there is no fluid in PED while in severe AMD fluid exists.
The proposed method for PED segmentation is to flatten the elevated RPE and
compute the region between flattened RPE and elevated RPE. Segmented RPE
in the previous section is the elevated RPE. To flatten RPE, first all pixels in
RPE are considered as a vector in which RPE(i) is the height of ith pixel in
RPE. When the RPE is elevated, a pick (or picks) are created. This pick is
determined as a point with the maximum curvature. Then, the left and right
sides where the curve begins and ends are found. Finally, left and right sides
are connected by 1D linear interpolation which leads to the flattened RPE. Two
samples of the flattened RPE results are shown in Fig. 1.

2.3 IRF and SRF segmentation with CNN

IRF and SRF fluid types are located between ILM and elevated RPE. Here,
IRF and SRF segmentation are modeled as a supervised classification task in
which fluid (IRF and SRF) and tissue pixels are labeled as 1 and 0, respectively.
Therefore, CNN is trained for binary classification. It may be noted that in this
step, both fluid types are classified as fluid. The type of fluid is determined based
on Algorithm 1.
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Fig. 1. Two samples of ILM and RPE segmentation results.

Algorithm 1 IRF and SRF Labeling.

1: Inputs: Binary segmented image by CNN: SegBscan (fluid=1, tissue=0), Tr-
shld=40.

2: Output:Labeled fluid pixels as IRF or SRF.
3: Find all connected components in SegBscan and save them in CCom.
4: for i=1:length(CCom) do
5: CC = CCom(i)
6: for j = 1: length(CC) do . All pixels in CC
7: Find the vertical distance of pixel j from the segmented elevated RPE (with-

out flattening) and save it in dist(j)

8: MinDist = min(dist)
9: if MinDist < Trshld then

10: Label all pixels in CC as SRF .
11: else Label all pixels in CC as IRF .

12: End.

2.4 Fluid Detection

Another contribution of this paper is fluid detection. For each Bscan, probabili-
ties of the existence of IRF, SRF and PED are computed. In the next step, these
probabilities are computed for each OCT volume. In this work, the probability
of IRF, SRF and PED are computed by thresholding. Therefore, a binary value
is assigned for each Bscan which means that this Bscan may or may not con-
tain fluid. For each fluid type in a Bscan, TrIRF = 110, RtSRF = 180 and
TrPED = 85 are considered as thresholds for IRF, SRF and PED detection,
respectively. If the number of segmented pixels for each fluid type is bigger than
corresponding threshold this probability is 1, otherwise it is 0.
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3 Experimental results

To evaluate the proposed algorithms, released training data are divided into 2
groups, training and validation sets. Note that segmentation results for test set
in challenge competition will be submitted after the submission of this paper.
Train set contains 24 volumes from three manufacturers. For each manufacturer,
16 volumes are considered as training set and 8 volumes as validation set. PED
segmentation is performed by the proposed layer segmentation and layer flatten-
ing methods. Therefore, it does not need a training set and can be applied in each
OCT scan in an unsupervised manner. For IRF and SRF segmentation, three
CNNs are constructed and trained for the OCT Bscans of each manufacturer.
In each CNN, 16 OCT volumes of each manufacturer are used in training step
and remaining 8 OCT volumes are used for evaluation. Architecture of CNN is
described in the next section.

3.1 CNN architecture

CNN is applied to each Bscan separately. For this task, each pixel is windowed
by a [10 10] window of its neighbors. Then, these windows are input to the CNN.
Therefore, each pixel is labeled as fluid or tissue by its 100 neighbors. Architec-
ture of CNN is as follows:
First Layer: Convolution layer: number of feature maps=10, size of kernels=[3
3], activation function=rect.
Second Layer: Pooling layer: sub sample rate=2, sub sample method=mean.
Third layer: Fully-connected layer: number of nodes=150, activation function=tanh.
Fourth layer: Fully-connected layer: number of nodes=2, activation function=tanh.

The procedure to select training pixels for CNN is as follows: Consider a
fluid pixel in training set, three properties including pixel intensity, average and
standard deviation of the intensity of neighboring pixels are considered for this
pixel. In the next step, all fluid pixels which have the properties similar to this
pixel are removed from training set. Finally, a tissue pixel set with the same
size of fluid pixel set is selected from tissue pixels randomly. This approach
decreases the size of training set significantly since the majority of fluid pixels
have the same behavior with respect to the three mentioned properties. On th
other hand, ignoring such fluid pixels does not affect the performance of CNN
in classification.

4 Segmentation results

Proposed methods for layer segmentation and layer flattening are combined with
the proposed CNN architecture to segment all pixels in each Bscan as IRF, SRF,
PED and tissue. Fig. 2 shows two samples of the segmented Bscans in Spectralis
dataset. Also, Fig. 3 shows two samples of the segmented Bscans from Cirrus
and Topcon datasets with IRF, SRF and PED. In these examples, proposed
methods segment SRF, IRF and PED as shown in red, yellow and cyan colors,
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respectively. Tables 1 reports the average Dice coefficients of all Bscans in test
set. Proposed method achieves the average 76.44%, 92.25% and 82.14% of Dice
coefficients in Cirrus, Spectralis and Topcon datasets, respectively. Note that
these numbers are the average Dice coefficients in the segmentation of IRF, SRF
and PED.

Fig. 2. Two samples of the segmented Bscans in Spectralis dataset. (a): SRF, (b): PED

Table 1. Dice Cofficient for IRF, SRF and PED segmentation in Cirrus, Spectralis
and Topcon datasets.

Cirrus Spectralis Topcon

Dimension 1024x512 496x512 885x512

# of Train Bscans for
IRF and SRF

2048 784 2048

# of Train Bscans for
PED

0 0 0

# of Test Bscans 1024 392 1024

IRF 78.45 96.24 81.65

SRF 69.74 94.53 79.64

PED 81.13 85.98 85.13

Average 76.44 92.25 82.14
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Fig. 3. Two samples of the segmented Bscans. (a): A Bscan from Cirrus dataset with
SRF and PED, (b): A Bscan from Topcon dataset with IRF.
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5 Conclusion

This work presented a fully-automated method to segment and detect three
types of fluid including IRF, SRF and PED in OCT volumes from subjects with
AMD and RVO. The proposed method is based on graph shortest path methods
for layer segmentation and flattening and CNN for pixel classification. IRF and
SRF are classified as fluid or tissue by CNN and an Algorithm is proposed for
IRF and SRF labeling. PED is segmented by flattened RPE and elevated RPE.
Results show the ability of the proposed method in the segmentation of three
fluid types for different manufacturers. Future efforts will be directed towards
fine-tuning the CNN to achieve better results especially in Cirrus dataset with
low signal to noise ratio. Finally, reproducibility studies between segmentation
following repeat imaging can be addressed as another future work.
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