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ABSTRACT

Grading whole slide images (WSIs) is an important task in
digital pathology for treatment planning but it suffers from
subjectivity and limited reproducibility. The grading of WSIs
is also time consuming and therefore expensive. Designing a
robust and automatic solution for decision support is a game
changer. We propose a fully automatic pipeline from a set of
patient whole slide images to pathologic N-stage prediction.
Our approach consists of two steps: i) Segmentation of metas-
tasis in whole slide images, ii) pathologic N-stage predictions
from segmentations.

Index Terms— segmentation, FCN, metastasis, breast
lymph nodes.

0. INTRODUCTION

This work is focused on the prediction of pN-stage for breast
cancer patients. The pN-stage assesment is based on the com-
bined metastatic involvement of several lymph nodes and is
one of the most important factors in deciding treatment of
breast cancer. Common practice in current clinical settings
is to assess metastatic involvement of the each lymph node
specimen manually under a microscope. Although this task
is routinely performed there is room for improvement since
this procedure is highly subjective in nature and the task is
difficult and time consuming.

The drawbacks of the current manual practice has created
interest in automatic assessment of whole slide images for de-
cision support. Automatic methods aim at reducing the sub-
jectivity of current practices and limiting the time for slide
assessment. Recent advances using machine learning meth-
ods such as convolutional neural networks for image anal-
ysis obtained excellent results for the analysis of histologi-
cal slides [1][2]. The success and development of machine
learning algorithms are largely driven by the availability and
quality of annotated data. Due to the increased interest in the
field several challenges such as TUPAC, AMIDA and CAME-
LYON [3, 4, 2] have been created in order to push forward
scientific research in the field by providing annotated data.

Automatically assessing whole slide images has several
challenging aspects. The nature of the task requires informa-
tion about the specimen on cellular level, this leads to very
high resolution i.e. very large images. Assessing the slide re-

quires attention to image structures of approximately 104 pix-
els (a 100× 100 pixel neighborhood) within large WSIs con-
taining 1010 pixels. Future challenges include solving the
subjectivity of annotations and variations in specimen stain-
ing (due to different practices regarding staining and slide
preparation).

Recent results of previous challenges were focused on
performing in slide predictions such as the detection of mi-
totic figures or segmentation of tumors. Although the state-
of-the-art for these tasks is approaching and even surpassing
[2] human-level performance these results have not been fo-
cused on the task of patient level assessment.

In the CAMELYON17 challenge the objective is to make
a patient level prediction based on information from several
whole slide images. Our proposed method computes pixel
level segmentation of slides. We then extract geometrical
properties from the segmentation maps that are used as fea-
tures to a classification model predicting the slide level metas-
tasis grading. Patient level grading is then computed accord-
ingly.

We propose an ensemble approach: we combine several
U-net [5] learned from different pixel resolutions in a directed
acyclic graph (DAG) structure. The U-net being a pixel wise
classification model (as to compare with a patch wise classi-
fication model), its output and input are in the same domain,
this allows to combine different U-nets together by concate-
nating the output of one (or several) model to the input of
another.

Since we can learn the U-net on any slide level resolu-
tion, this architecture allows integrate the information avail-
able from these different levels. It also have the benefits of en-
semble learning, we can learn the individual U-nets with dif-
ferent strategies or hyper-parameters inducing different mod-
eling expressiveness that can be integrated in their combina-
tion. Another advantage of such approach is that the resources
spent to learn individual models are cumulative. The classical
non ensemble approach would spend resources to learn differ-
ent models in order to choose the best hypothesis among dif-
ferent architectures or hyper parameter sets, and then choose
the best candidate and disregard the others. This is resource
wise expensive because discarded models only contribute in
the choice of the best candidate. In our ensemble approach the
models are combined and they contribute by providing sta-
tistical information about the joint distribution between slide



pixels and annotation data to another model.
In combination to the ensemble approach, we propose to

learn the U-nets using boosting inspired technique. Unlike the
standard approach, we do not setup a static dataset on which
the model is fitted. Instead we sample patches from the slides
in a dynamic setup involving two processes. The first process
is the training process that samples the patches from slides
according to error map images that contain, for each slide,
the pixel classification error of the model. These error map
images are computed using another process called the error
map process. These two processes are synchronized and they
can run on different computer and GPUs. This approach al-
lows to speedup the learning because the model focuses on
regions where the gradients are largest.

1. DATA

1.1. Available data

Two sources of data have been used during training of the
model, the data from CAMELYON16 and CAMELYON17.
The CAMELYON16 dataset was originally used in the 2016
edition of the Camelyon competition with the objective to
detect and localize tumors in the whole slide images. The
CAMELYON17 dataset was created for use in the 2017 edi-
tion of the Camelyon competition.

The CAMELYON16 dataset contains whole slide images
with corresponding annotations of metastatic areas. A small
subset of the data has not been exhaustively annotated.

The CAMELYON17 dataset contains whole slide images
categorized by patient and clinical center. The annotations
available are patient pN-stage and the largest tumor class for
each slide. Additional annotations of metastatic areas are
available for a subset of the data from each clinical center.
The metastatic area annotations are of the same type as from
the CAMELYON16 dataset.

1.2. Training and validation sets

For training we used all the slides from CAMAELYON16
and all the patients from CAMELYON17 that had at least one
pixel level annotated slide. We had 57 patients remaining for
the validation set used to design the architecture of the DAG.

2. METHOD

2.1. Dynamic sampling

2.1.1. Patch wise dynamic sampling

We trained our models with patches dynamically extracted
from slides using a pixel-level probability density function
inferred from the error of the model on the pixel level clas-
sification. The probability density function is computed on a

separate process synchronously with the train process as il-
lustrated on [Figure 1]. While the train process train on a
sampled patches set, the error map process compute the error
map of the next slide. When it has finished, the train process
samples a new set of patches. The size of this set is automat-
ically adjusted to avoid waiting state between the two pro-
cesses. This shorten the duration of cycles and ensures that
the sampling of patches is made on a error map computed
with up-to-date model parameters.
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Fig. 1. Dynamic sampling cycle. Train Process samples
dynamically from Patch level. Model Error Map Process dy-
namically sample on Slide level according to different strate-
gies

2.1.2. Slide wise dynamic sampling

The error map process chooses the next slide to sample
patches from. This is done using a slide level sampling dis-
tribution that gives more probability on slides that contains
greater errors. This can be designed according to several
optimizations strategies. Among them, we used probability
distribution that emphasize the optimization of the recall,
such that slides that on which the model misses many cancer
regions are prioritized. Similarly, we used distribution that
optimize the slide level grading classification, slide whose
segmentation induces wrong grading classification are sam-
pled more often. As a third strategy we used distribution
that optimized informedness score of slides. These different
strategies allowed to learned models with wider expressivity.
This is a desirable property in the context of model ensem-
bling where we want reduced redundancy between models.



2.2. Model for Metastasis segmentation

Our segmentation model combines 9 U-nets in a DAG struc-
ture illustrated in [Figure 2]. Each U-net is learned with vari-
ation of hyper parameters, slide sampling distribution and in-
put resolution mpp (micrometer per pixel) . Models were
stacked according to increasing stages. At first stage (stage
1) we independently trained 3 U-nets. On later stages models
are combined with those from previous stages. Their input
were augmented by adding extra channels containing the out-
puts of previous models [Figure 3].
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Fig. 2. DAG structure of the proposed model Different slide
sampling strategies used: Stage grading error, Recall and In-
formedness. Different resolutions 0.5-4 mpp.
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Fig. 3. Combination of Models RGB image, Model 1,2..n
predictions and Label image.

For all models we used the same data augmentation, ran-
dom rotation and mirroring, and color perturbation (hue, sat-
uration, brightness, contrast). The channels corresponding to
the connected models were not color augmented.

2.3. pN-stage prediction

For each slide we extracted the diameter of the largest tumor
after applying a dilation filter on the segmentation map with a
size of 300 micrometers, we did this for nine different thresh-
olds ranging from 0.1 to 0.9, resulting to 9 features per slides.
These features are feed into a random forest classifier to pre-
dict the slide level grading. The model parameters are opti-
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Fig. 4. Patch Processing pipeline. All processing are applied
dynamically in the pipeline and are randomized except for the
combination of models.

mized using cross validation on the validation set. The final
PN-Stage is computed according to the rules.
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