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1. INTRODUCTION

Automated detection and localization of lung nodules is a
challenging task especially if only chest radiographs are
available. Recently, convolutional neural networks have
shown promising results for this task. Still, the task remains
difficult. First, the available data for training is limited as
annotated data is rare and expensive to obtain in the medical
domain. Even though there exist large-scale data sets of chest
x-ray radiographs [1, 2, 3, 4] only a small part of the data
sets contain nodules and even less reliable annotations from
domain experts are available. Second, imbalanced data sets
are very challenging and especially larger models are prone
to overfitting without proper rebalancing. Furthermore, class
imbalances impede the training and generalization of deep
learning methods especially for the task of object detection
[5].
In the recent literature, various approaches and model ar-
chitectures for the task of object detection are proposed [6].
These models are often compared on large-scale benchmark
data sets such as the Common Objects in Context data set
(COCO) [7]. However, due to the lack of a general bench-
mark data set for the medical domain and especially nodule
detection, a fair comparison of the different approaches is
hard to obtain. To collect and report state-of-the-art meth-
ods for automated nodule detection, Ecem Sogancioglu et
al. host the Node21 Challenge where participants can submit
individual solutions. The challenge has two tracks, nodule
detection and generation. A data set, annotated and revised
by radiologists is provided to the participants for the training
of individual solutions. With this submission, we provide our
solution for the detection track of Node21 and systematically
address each of the aforementioned limitations. First, to ad-
dress the class imbalance, we generate artificial nodules and
add them to the training data to obtain a balanced training set.
Second, to address limited data we apply transfer learning
by using pre-trained models, trained on a similar task and
only fine-tune the model parameters with the provided data.
Thereby, we enrich the experience of our models and coun-
teract overfitting. Lastly, with several methods available for
object detection and their individual advantages, we leverage
a selection of methods to obtain a rich and well generalizing
algorithm for our final submission.

2. METHODS

Table 1. Summary of the data sets with their respective num-
ber of images and fraction of images containing nodules. Af-
ter sampling the additional test set, we apply a 5-fold cross-
validation to the data set. For the training- and validation set,
representative numbers of one fold are reported.

Data Set Number of Images Fraction Positives
Training Set 3626 23%
Validation Set 906 23%
Add. Test Set 350 50%
Exp. Test Set 281 59%
Final Test Set N/A N/A

2.1. Data Set

The data set of the Node21 challenge consists of 4882 frontal
chest radiographs from four different public data sets (JRST
[1], PadChest [3], Chestx-ray14 [2], Open-I [4]). All images
are revised and annotated by radiologists. The majority of the
radiographs (N=3748) are free of nodules while 1134 radio-
graphs show at least one nodule (1476 nodules in total). For
the evaluation of the challenge submissions, two additional
test sets are used. One experimental test set (N=281) to test
intermediate results for the participants and one final test set
to evaluate the final submission. In contrast to the training set,
the experimental test set shows a smaller class imbalance. For
the final test set, no further details are provided.
To evaluate our models and methods we partition the provided
data set into a training set (N=4532) and an additional test set
(N=350). We use this test set beside the experimental test,
which only has limited evaluations. To achieve a balanced
test set, which represents a high variance, we take an equal
amount of images with nodules and images without nodules
from each public available data set. For JRST, PadChest and
Chestx-ray we use 50 images from each class respectively
while for the Open-I data set we only use 25 images due to the
low number of images with nodules. Furthermore, we apply
a 5-Fold cross-validation to the training set. To ensure a simi-
lar class distribution across the folds we sample the individual
training and validation sets in a stratified fashion grouped by



patients. Having tuned our algorithms, we merge the addi-
tional test set to our training set to train the final models.

2.2. Pre-Processing

We follow the pre-processing strategy provided by the chal-
lenge organizers. No additional pre-processing steps are ap-
plied. The images are provided with a resolution of 1024 ×
1024px. For models with a required input resolution other
than 1024×1024px, we resize the images to the desired input
resolution by linear interpolation and scale back the detected
bounding boxes to match the input resolution for evaluation.

2.3. General approach

Our general approach is to use an ensemble of high-performing
state-of-the-art methods to leverage all individual benefits and
to build a well-generalizing model. We include four different
models to our experiments, namely Faster-R-CNN [8], Reti-
naNet [8], EfficientDet-D2 [9] and Yolov5 [10]. To account
for the limited training data, except for RetinaNet, all models
utilize pre-trained weights as is described in section 2.6. To
tackle the class imbalance in the data, we generate images
with nodules and add them to the training set. Thereby, we
replace nodule-free images in the training set with images
with generated nodules (for details, see Section 2.4. For bet-
ter generalization, we apply 5-fold cross-validation.
Afterwards we consider each model from the individual folds
and ensemble the predictions with weighted box fusion [11]
to obtain a combined prediction. In the following, details
for the used architectures are provided. All models are im-
plemented using Pytorch with Pytorch-lightning, except for
Yolov5 where the original pipeline is adapted as it comes
with excellent pre- and post-processing steps.

2.3.1. Faster-R-CNN

We use an implementation of Faster-R-CNN that is similar to
the baseline algorithm provided by the challenge hosts. We
utilize the torchivison implementation of Faster-R-CNN with
a pre-trained ResNet-50 as a backbone network. All model-
specific parameters are kept unchanged. However, for transfer
learning, we keep all model parameters trainable.

2.3.2. RetinaNet

For RetinaNet, similar to Faster-R-CNN we make use of the
torchvision implementation with a ResNet-50 as a backbone.

2.3.3. EfficientDet-D2

We implement EfficientDet-D2 with a EfficientNet-B2 back-
bone based on [12]. We allow a maximum of 100 predicted

bounding boxes per image and drop all predictions with a pre-
dicted score below 0.01. In addition, we freeze all batch nor-
malization layers. This is motivated by two reasons. First, the
retraining of the networks by the challenge hosts requires the
models to run with a small batch size as the GPU memory is
limited to 16GB. However, reasonable batch size is required
to produce a meaningful estimate of the population param-
eters. Therefore, we freeze the batch normalization param-
eters, to avoid undesirable training configurations. Second,
with frozen parameters we observed less overfitting of our
models when training with imbalanced data sets.

2.3.4. Yolov5

For Yolov5 we use the original implementation from [10]. For
our experiments, we chose Yolov5x as model architecture. As
for EfficientDet-D2, we drop all predictions with a prediction
score below 0.01. Furthermore, on top of oversampling, the
positive classes are weighted by a factor of 1.27. For Yolov5,
we use two different input resolutions of 640 × 640px and
1024×1024px and merge the predictions for both resolutions
in the final ensemble model. The size of anchor proposals
is automatically chosen by k-means clustering based on the
bounding box sizes before training.

2.4. Imbalanced Sampling and Nodule Generation

As a first step to address the class imbalance, we oversam-
ple the minority class of our training set, to rebalance the
mini-batches. During validation, we undersample the minor-
ity class to enable a proper validation. Thereby, we achieve
a balanced dataset for both training and validation. As a sec-
ond step, we consider generating artificial nodules. To this
end, we make use of the provided baseline algorithm from
the generation track of the node21 challenge. We randomly
sample 1000 images from the training data and use the gen-
eration algorithm to place one or more nodules in the healthy
image. By this, we achieve a balanced data set for the training
and evaluation of our models. Note, that the nodule genera-
tion is done offline beforehand. As a result, we achieve a
balanced data set for training and evaluation without the need
for oversampling and thus with a reduced risk for overfitting.

2.5. Data Augmentation

We use common data augmentation strategies provided by the
albumentations library [13] for training. For Faster-R-CNN,
RetinaNet and EfficientDet-D2 we crop or pad the images
randomly by a maximum of 50 pixels to add robustness for
different fields of view. Also, Horizontal flipping (p=0.5) and
random rotation by a maximum of 5 degrees (p=0.6) are ap-
plied. Furthermore, we blur the images (p = 0.5) and apply
cutout augmentation (p=0.5). For Yolov5 the augmentation



Table 2. Hyperparameters for Training. For gradient clipping, the gradients’ global norm is clipped to the reported values.
Parameter Yolov5-large Yolov5-small Faster-R-CNN RetinaNet EfficientDet-D2
Learning Rate 8.94e-3 1.15e-2 1.0e-4 1.0e-4 1.0e-4
Optimizer SGD SGD Adam Adam Adam
Batch Size 8 16 16 16 16
Epochs 20 20 25 60 20
SWA Start N/A N/A 20 45 15
SWA Annealing epochs N/A N/A 5 15 5
Warmup Epochs 2.5 2.8 5.0 5.0 5.0
Gradient Clipping Value N/A N/A 3.0 3.0 3.0

strategies of the original pipeline are used1. During the eval-
uation, no augmentation is applied, except for Yolov5, where
test time augmentation (TTA) is applied. Hereby, each image
is evaluated multiple times for flipped and scaled versions of
the image. The predictions are then merged before applying
non-maximum-suppression.

2.6. Transfer Learning

For Yolov5, Faster-R-CNN and EfficientDet-D2, we make
use of pre-trained model weights to account for the limited
training data. The models are pre-trained on the VinDR data
set [14] and the model checkpoints originate from the VinBig-
Data Chest X-ray Abnormalities Detection Challenge. Thus,
the pre-trained weights are well suited to be used as start-
ing point for fine-tuning the models on the nodule data set.
Across all models, we keep all layers trainable except for
batch norm parameters.

2.7. Training parameters

For all our models we individually tune hyperparameters
coarsely based on the validation set performance of our cross-
validation approach. Therefore, the parameters differ for each
model. For Faster-R-CNN, RetinaNet and EfficientDet-D2,
we train a fixed number of epochs, apply stochastic weight
averaging (SWA) [15] and use the last checkpoint for the final
prediction. For Yolov5, we validate our models every epoch
and early stopping is applied based on the validation set.
Here, training is stopped, if the weighted combination of Pre-
cision, Recall and mean average precision does not improve
for 12 epochs. Finally, the best model is used for the final
prediction. A summary of all training parameters is provided
in Table 2. For all models, cosine annealing [16] is used as
learning rate schedule. Training of our models is performed
on NVIDIA RTX 3090 and NVIDIA V100 (32GB) graphics
cards depending on the model size.

1Specific data augmentation parameters are fine-tuned by hyperparameter
evolving, provided by the Yolo framework

2.8. Final Submission and Ensembling

For our final submission, we build an ensemble of Faster-R-
CNN, RetinaNet, EfficientDet-D2 and Yolov5. Additionally,
we use two different input resolutions for the Yolov5 model,
namely 640 × 640px and 1024 × 1024px. To leverage the
whole data set, we fuse our additional test set to the train-
ing set for training the final models. For each model, we
train 5 versions from different folds of the data set by per-
forming a five-fold training approach. As inference time is
limited, we only use one out of five folds of EfficientDet-D2
for our final model and replace it with one fold of yolov5-
large. This results in 20 model checkpoints in total. For each
model prediction we use non-maximum-suppression with an
IoU threshold of 0.2 to suppress overlapping box predictions
of the same model. Finally, we ensemble all model predic-
tions by using weighted box fusing [11]. Here we skip boxes
with a score below 0.1 and predicted boxes are merged if their
IoU is above 0.2.

3. FINDINGS

In this section, we want to provide additional findings that
arise during working on the challenge. First, we observe that
the imbalanced data set is very challenging and especially
larger models are prone to overfitting without proper rebal-
ancing. Our experiments show that simple oversampling can
mitigate the effect of the imbalanced training data. Further-
more, the generation of artificial nodules has shown small
improvements over the oversampling approach. Thus, we
decided to use the training set with generated nodules for the
training of our final models. Further work could focus on an
additional class weighting of the loss during training and also
training sets with a larger proportion of images with nodules
would be interesting to investigate.
Second, we investigate the use of detection transformer
(DETR) [17]. Even though DETR outperforms all other
models on our evaluation sets, it shows significant perfor-
mance drops on the experimental test set. We believe, that a
larger data set would be required to train this model properly
as it did not even converge if trained from scratch.
Third, we investigate the use of TTA and mosaic augmenta-



tion for all models. However, for both techniques, only the
yolov5 model shows benefits from their use.
Overall, we tuned our algorithms and all hyperparameters
coarsely based on the validation- private- and experimental
test set. In general, for tuning hyperparameters, we utilized
our additional test set and for broader model decisions we
also evaluated the algorithms on the experimental test set.
We observed that the metrics on the different data sets are
not always congruent which might be caused by the different
degrees of imbalances. In cases where no congruent result
was found, we chose the solution that works best on the ex-
perimental test set, as a smaller domain shift to the final test
set is assumed.
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