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Abstract. Fueled by the diversity of datasets, semantic segmentation is
a popular subfield in medical image analysis with a vast number of new
methods being proposed each year. This ever-growing jungle of method-
ologies, however, becomes increasingly impenetrable. At the same time,
many proposed methods fail to generalize beyond the experiments they
were demonstrated on, thus hampering the process of developing a seg-
mentation algorithm on a new dataset. Here we present nnU-Net ('no-
new-Net’), a framework that automatically adapts itself to any given
new dataset. While this process was completely human-driven so far, we
make a first attempt to automate necessary adaptations such as prepro-
cessing, the exact patch size, batch size, and inference settings based
on the properties of a given dataset. Remarkably, nnU-Net strips away
the architectural bells and whistles that are typically proposed in the
literature and relies on just a simple U-Net architecture embedded in a
robust training scheme. Out of the box, nnU-Net achieves state of the
art performance on six well-established segmentation challenges. Source
code is available at https://github.com/MIC-DKFZ/nnunet.
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1 Introduction

Semantic segmentation remains a popular research topic in the domain of medi-
cal image computing with 70% of the international competitions being devoted to
it [§]. Important reasons for the enduring interest certainly are the diversity and
individual peculiarities of imaging datasets encountered in the medical domain
(see e.g. [I4] for a detailed overview): datasets vary tremendously when consid-
ering cohort size, image dimensionality, image size, voxel intensity ranges and
intensity interpretation. Class labels in the images can be highly imbalanced and
labels can be ambiguous, while expert annotation quality varies strongly from
dataset to dataset. Furthermore, certain datasets are quite inhomogeneous with

respect to image geometries or might exhibit slice misalignments and extremely
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anisotropic spacings. Taken together, these circumstances make it more difficult
to generalize findings from one task to others, and they often prevent immediate
success when re-applying methods out of the box to a different problem. The pro-
cess of adjusting design decisions or proposing new design concepts is complex:
most choices are highly dependent on each other, and evidence to substantiate
choices is spread over myriads of papers including a lot of "noise”. This natu-
rally led to a large number of segmentation methods being proposed in the recent
years. Just to provide some prominent examples: variations of encoder-decoder
style architectures with skip connections, first introduced by the U-Net [12],
include the introduction of residual connections [9], dense connections [6], at-
tention mechanisms [I0], additional loss layers [5], feature recalibration [I3], and
others [II]. The specific modifications differ substantially from each other, but
they all share a particular focus on architectural modifications. Given the large
amount of segmentation-related publications on the one hand and the diversity
of the specific implementations and dataset-related challenges on the other, it
becomes increasingly difficult to follow the literature and ascertain which design
principles actually generalize beyond the experiments they were demonstrated
on. Based on our own experience, many new design concepts did not improve,
or sometimes even worsened the performance of a well-designed baseline.

A key problem in medical image computing today is that the process of ap-
plying a (segmentation) method to a new problem is completely human-driven.
It is based on experience, with the papers mostly focusing on the network archi-
tecture, while merely brushing over all the other hyperparameters. Sub-optimal
adaptations of a baseline method are regularly compensated for by the proposal
of a new architecture. Since the strong dependencies and amount of local min-
ima in hyperparameter space make it really hard to optimally adapt a method
to a new problem, nobody in this loop can really be blamed. This situation can
be frustrating for the researcher as well as the whole community. Especially in
the medical imaging domain where datasets are so diverse, progress will largely
depend on our ability to solve these problems.

This paper attempts a first step in this direction: we propose no-new-Net
(nnU-Net), a segmentation method that includes a formalism for automatic
adaptation to new datasets. Based on an automated analysis of the dataset,
nnU-Net automatically designs and executes a network training pipeline. Being
wrapped around the standard U-Net architecture [I2], the hypothesis was that
a systematic and careful choice of all hyperparameters will still yield competi-
tive performance. Indeed, without any manual fine-tuning, the method achieves
state-of-the-art performance on several well-known medical segmentation bench-
marks.

2 Method

A segmentation algorithm can be formalized as a function fp(z) = ¢, with x
being an image, § the corresponding predicted segmentation and 6 the set of
hyperparameters required for training and applying the method. The dimen-
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sionality of # can be quite large, covering the entire experimental pipeline from
preprocessing to inference. Publications usually focus on reporting and substan-
tiating the most relevant choices regarding 6, and ideally provide source code
to cover @ entirely. This process, however, lacks insights into how 6 must be
adjusted if transitioning to a new dataset with different properties. Here, we
make the first attempt at formalizing this process. Specifically, we seek for a
function g(X,Y") = 0 that generalizes well between datasets. As a first step, this
requires identifying those hyperparameters that do not need adaptation, in our
case reflecting a strong but simple segmentation architecture and a robust train-
ing scheme, and those that are dynamic, i.e. need to be changed in dependence
of X and Y. In a second step we define g for the dynamic parameters, which in
our case is a set of heuristics rules that adapt the normalization and resampling
scheme, configure the patch size and batch size as well as compute the exact net-
work geometries including ensembling and inference techniques. Taken together,
this is nnU-Net, a segmentation framework that adapts itself without any user
interaction to previously unseen datasets.

2.1 Preprocessing

Image Normalization. nnU-Net requires the information of what modality
its input channels are. If a modality is not CT, nnU-Net normalizes intensity
values by subtracting the mean and dividing by the standard deviation. If a
modality is CT, all foreground voxels in the training set are collected and an
automated level-window-like clipping of intensity values is performed based on
the 0.5 and 99.5th percentile of these values. To conform with typical weight
initialization methods, the data is then normalized with the global foreground
mean and standard deviation. The described scheme is independently applied
to each case and each modality. Voxel Spacing. nnU-Net collects all spacings
within the training data and for each axis chooses the median as the target spac-
ing. All training cases are then resampled with third order spline interpolation.
Anisotropic spacing (here out-of-plane spacing three times larger than in-plane
spacing) can give rise to interpolation artifacts. In this case, out-of-plane in-
terpolation is done using nearest neighbor. For the corresponding segmentation
labels, spline interpolation is replaced by resampling each label separately with
linear interpolation.

2.2 Training Procedure

Network Architecture. Three U-net models are configured, designed and
trained indepentently of each other: a 2D U-Net, a 3D U-Net and a cascade of
two 3D U-Net models where the first generates a segmentation at a low resolution
which is subsequently refined by the second model. The only notable changes
to the original U-Net architecture are the use of padded convolutions to achieve
identical output and input shapes, instance normalization and Leaky ReLUs in-
stead of ReLUs. Network Hyperparameters. Depending on the shape of the
preprocessed training data, the specific instantiation of the U-Nets is adapted.
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Specifically, nnU-Net automatically sets the batch size, patch size and number of
pooling operations for each axis while keeping the memory consumption within
a certain budget (12 GB TitanXp GPU). Hereby, large patch sizes are favored
over large batch sizes (with a minimum batch size of 2) to maximize the amount
of spatial context that can be captured. Pooling along each axis is done until
further pooling would reduce the spatial size of this axis below 4 voxels. All
U-Net architectures use 30 convolutional filters in the first layer and double this
number with each pooling operation. If the selected patch size covers less than
25% of the voxels in a typical training case, the 3D U-Net cascade is addition-
ally configured and trained on a downsampled version of the training data. The
cascade is intended to enable nnU-Net to still acquire sufficient context if the
patch size is too small to cover the full resolution. Network Training. All U-
Net architectures are trained in a five-fold cross-validation. One epoch is defined
as processing 250 batches. The sum of the cross-entropy loss and the dice loss
are used as loss function. Adam was used as optimizer for stochastic gradient
descent with an initial learning rate of 3 x 10~* and I weight decay of 3 x 107>,
Whenever the exponential moving average of the training loss does not improve
within the last 30 epochs the learning rate is dropped by a factor of 0.2. Training
is stopped when the learning rate drops below 10~ or 1000 epochs are exceeded.
We apply data augmentation on the fly during training using the batchgenera-
tors frameworkﬂ Specifically, we use elastic deformations, random scaling and
random rotations as well as gamma augmentation. If the data is anisotropic, the
spatial transformations are applied in-plane as 2D transformations.

2.3 Inference

Cases are predicted using a sliding window approach with half the patch size
overlap between predictions. This increases the weight of the predictions close
to the center relative to the borders. Test time data augmentation is applied by
mirroring along all axes.

nnU-Net ensembles combinations of two U-Net configurations (2D, 3D and
cascade) and based on the cross-validation results automatically chooses the
best single model or ensemble to be used for test set prediction. For the selected
configurations, nnU-Net furthermore uses the five models resulting from the
cross-validation for ensembling.

3 Results

nnU-Net was initially developed on the seven training datasets of the phase I
from the Medical Segmentation Decathlon challenge [4]. As described in [14],
these datasets cover a substantial amount of variability and challenges that are
typically encountered in medical segmentation problems. nnU-Net was evaluated
both on the Medical Decathlon Segmentation challenge (phase I and phase II)

* https://github.com/MIC-DKFZ/batchgenerators/
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Fig. 1. Summary of nnU-Net performance on the test sets of medical segmentation
challenges. All leaderboard submissions are plotted for each dataset and label (accessed
on March 25th 2019). Numbers for Decathlon, LiTS, ACDC and BCV are Dice scores,
MS lesion and PROMISE12 use different metrics [37]. Best viewed in electronic format.

as well as five additional popular medical segmentation challenges. All challenge
participations are summarized below and an overview is given in Figure

Medical Segmentation Decathlon (Decathlon). Phase I of this chal-
lenge consisted of the seven aforementioned datasets which were used by partici-
pants to develop generalizable segmentation algorithms. In phase II, three addi-
tional datasets that were previously unknown were made available. Algorithms
were applied to these datasets with no further changes or user interaction. The
evaluation for both phases was done on the official test sets. nnU-Net was the
clear winner of the Decathlon challenge in both phase I and phase II. Auto-
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Fig. 2. Ablation studies on the design choices of nnU-Net. Experiments were done on
representative datasets from the Medical Segmentation Decathlon using one split of
the training data and a 3D U-Net. Numerical values for nnU-Net represent the average
foreground Dice scores (i.e. mean between liver and tumor dice for the liver dataset),
values for the ablation studies represent the percentage-wise change in Dice score.

matic Cardiac Segmentation Challenge (ACDC) [1]: Here, three parts of
the heart were to be segmented in cine-MRI images for two different time steps.
100 training cases were provided with two time steps each. We manually split the
data for nnU-Nets five fold cross-validation runs to ensure patient stratification.
nnU-Net achieved the first place in the open leaderboard (based on the 50 test
cases) and set a new state-of-the art on this dataset. Longitudinal multiple
sclerosis lesion segmentation challenge [3]: The task was to segment MS le-
sions in MRI images. 5 patients were provided, each with 4-5 time points (21 time
points in total) and two raters providing annotations per time point. We treated
each rater as a separate training example and again manually split the training
cases to ensure patient stratification. On the test set, nnU-Net ranked 5th out
of 163 with a score of 93.09 and was just closely behind four submissions from
Vanderbilt University of which the highest has a score of 93.21. PROMISE12
[7]: The task was the segmentation of the prostate in anisotropic MRI images.
50 annotated training cases and 30 unlabelled test cases were provided. nnU-Net
achieved a test set score of 89.08 which places it 11th out of a total of 290 sub-
missions (1st place: 89.59). LiTS. The Liver Tumor Segmentation challenge [2]
consists of 131 training images (CT) and 70 test cases. For the training cases,
segmentations of the liver and liver tumors were provided. nnU-Net achieved
dice scores for lesion and liver of 0.725 and 0.958, respectively. Post processing
by removing all but the largest connected foreground region improved the dice
scores to 0.738 and 0.960, setting a new state of the art in lesion dice while
representing the 17th place for the liver label (first place: 0.966) on the open
leaderboard (123 teams in total). Multi-Atlas Labeling Beyond the Cra-
nial Vault Challenge (Abdomen). Here the task was segmentation of 13
organs in abdominal CT images. The challenge provided 30 annotated training
images and 20 test images. nnU-Net set a new state of the art with an average
dice score of 88.1%, which is more than 3 points higher than the next best result
(43 submission in total on the leaderboard). Looking at the individual organs,
nnU-Net scored the highest dice scores in 11/13 organs.

Figure[2]shows ablation studies that were conducted to confirm design choices
made in nnU-Net. All experiments were done on one split of the training data
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and a representative subset of datasets from Phase I of the Decathlon was cho-
sen. These results indicate on the one hand that our decision for using Leaky
ReLUs should be revised, but on the other hand confirm our choice of instance
normalization, data augmentation and loss function.

4 Discussion

We introduce nnU-Net, a framework that automatically adapts itself to any
given medical segmentation dataset without user intervention. To the best of
our knowledge, nnU-Net is the first attempt at formalizing the neccessary adap-
tations that need to be made between datasets. nnU-Net achieves state of the art
performance on six publicly available segmentation challenges. This is remark-
able given that nnU-Net took away most of the more complicated developments
of the recent years and relied on nothing but simple U-Net architectures. Most
importantly, it has to be stressed that we did not manually tune hyperparameters
between challenges and that all design choices were automatically determined by
nnU-Net. It is thus even more surprising that it set new state of the art results
in datasets where it specifically competed against manually tuned algorithms.

nnU-Net revolves around both the selection of well-generalizing static design
choices such as the U-Net architecture, the dice loss, data augmentation and
ensembling, as well as a number of the dynamic design choices that are deter-
mined by a set of rules that ultimately reflect our segmentation expertise. Using
such rules may however not be the best way to approach this problem. Given
a larger number of segmentation datasets, future work could attempt to drectly
learn this from the properties of the datasets. While the specific properties of
nnU-Net chosen for this publication result in strong segmentation performance
across a number of datasets, we do not claim to have found the globally optimal
configuration. In fact, looking at the ablation studies presented in Fig. [2| we see
that the choice of replacing ReLLUs with Leaky ReLUs did not impact perfor-
mance and that our data augmentation scheme may not be ideal for all datasets.
Post-processing should also be investigated further. Our results on LiTS suggest
that a properly chosen postprocessing can be beneficial. Such a postprocessing
could be automated by analysing the training data or by choosing schemes based
on the cross-validation results. An attempt for such automation was part of the
initial version of nnU-Net that was used for the Decathlon Challenge, but later
discarded for being too conservative and not consistently improving results.

Now that we have established what could be considered the strongest U-Net
baseline to date, we can systematically evaluate more advanced network designs
with respect to their generalizability as well as their performance gain relative
to the plain architecture employed here. nnU-Net can thus not only be used as
an out-of-the-box segmentation tool, but also as a strong U-Net baseline and as
a platform for future segmentation-related publications. nnU-Net will be made
publicly available upon publication at https://github.com/MIC-DKFZ /nnunet.
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